
Technical Appendix
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Alicia H. Dang and Roberto M. Samaniego

This Technical Appendix provides additional material for the paper Capital De-

preciation and Industry Competition: Theory and Evidence.

In Appendix A, we discuss the measurement of key variables. Then, in Appendix

B, we present a number of robustness checks cited in the paper. Finally, in Appendix

C, we present the proofs of analytical results, as well as outlining the analytical basis

for the computational algorithm used in the paper. See the next page for a detailed

table of contents.
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A Measurement of Variables

In this section, we describe the measurement of the key variables in the paper,

including markups (Appendix A.1) and depreciation (Appendix A.2).

A.1 Markup Calculations

We calculate firm-level markups of price over marginal cost following the production

approach as presented in De Loecker et al. (2020). This approach is based on the

framework of De Loecker and Warzynski (2012) that integrates insights from Hall

(1988). Unlike the standard approach in the Industrial Organization literature which

derives markups from the first order condition of optimal pricing combined with

price-elasticities of demand and assumptions on how firms compete, this approach is

not conditioned on the specification of the demand system nor assumptions on firm

competition.

According to this production approach, markups are backed out from the cost

minimization conditions of a variable input of production. At time t, firm iminimizes

costs based on a production function that transforms the vector of variable inputs

V and capital stock Kit into output Qit. While individual variable inputs vary and

might include labor, intermediate inputs, materials... due to the nature of variable

input reporting in Compustat, we treat all individual variable inputs as a bundle,

and thus the vector V of variable inputs as a scalar V .

Following De Loecker et al. (2020), markup is defined as µ = P
λ
where P is the

price of the output good and λ is the Lagrange multiplier of the Lagrangian objective

function associated with the firm’s cost minimization. The Lagrange multiplier is
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considered a direct measure of marginal cost as it represents the value of the objective

function as output constraints are loosened.

From a rearrangement of the first order condition with respect to the variable input

V and plugging in the fraction that expresses λ, the formula to calculate markup can

be obtained as follows:

µit = θvit
PitQit

P V
it Vit

(1)

where θvit is the output elasticity of bundle of variable inputs V , Pit is the price of

the output good, and P V
it is the price of the variable input bundle V . θvit measures

the sensitivity of output to changes in variable inputs and can be derived from the

first order condition of the Lagrangian objective function for cost minimization of

the firm:

θvit ≡
∂Q(.)

∂Vit

Vit

Qit

=
1

λit

P V
it Vit

Qit

(2)

where Q(.) represents the technology of production or the form of the production

function.

We can break down equation 1 that expresses markups into two components: (i)

the output elasticity of the variable input bundle θvit and (ii) the ratio of revenue from

selling the output good (PitQit) to the cost of the variable input bundle (P V
it Vit). The

second component can be calculated from the Compustat database as it records both

net sale (revenue) and the cost of goods sold (cost of the variable input bundle). It

remains a task to estimate the first component which is θvit.
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There are a couple of methods to estimate the output elasticity of the variable

input of production. One major method, which is more quantitatively rigorous, is to

estimate θvit from a parametric production function. According to this method, the

output elasticity of the variable input bundle is the coefficient of the variable input

bundle in the production function with this variable input bundle and capital as

inputs. The estimation of the production function, at the same time, adopts standard

techniques in the literature1 to address potential endogeneity issues which arise from

the presence of the determinants of production e.g. productivity shocks that are

observable to the firm but not observable to an econometrician. Accordingly, the

identification strategy would happen through a two-stage approach where a control

function of optimal input (static) or investment (dynamic) demand is inverted to

allow us to control for unobserved productivity shocks. De Loecker et al. (2020) find

that results obtained using either the static or dynamic processes are very similar to

each other.

While following these standard practices, De Loecker et al. (2020) consider both

time-varying and sector-specific production function parameters for each of the 22

sectors at the 2 digit NAICS level. Thus, θvit varies across sectors and across time

under their assumptions. Multiplying this time-varying and sector-specific parameter

by the ratio of revenue to cost of goods sold, we get measures of markups that

varies across firms, allowing for the consideration of firm heterogeneity of markups

in our analyses. The output elasticity of variable input of our interest is thus the

1Some well-known techniques have been proposed by Olley and Pakes (1996) Levinsohn and

Petrin (2003), and Ackerberg et al. (2015)
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parameter θVst for each given industry s in the Cobb-Douglas production function

that is estimated at the firm level as follows:

qit = θVstvit + θKstkit + ωit + ϵit (3)

While this method helps overcome the potential biases in estimating the output

elasticity variable, its implementation is operationally complex as it requires the

identification of an optimal input decision, the inversion of which allows the econo-

metrician to account for unobserved productivity shocks.

At the same time, the alternative method to estimate θvit is to approximate it to

the share of expenditures on the variable input bundle in total cost. This share is

referred to as the “cost share” and is constructed by the ratio of cost of goods sold to

the sum of cost of goods sold and cost of capital in our data. While this alternative

method can be performed without the need to estimate the production function

and thus circumvents the challenging identification issues, it requires time-invariant

technological parameters and constant returns to scale in production.

As the main focus of our paper is to explore the role of technological characteristics

of production in industry competition, we apply time-varying production function

coefficients in order to better capture factor-driven technological changes and con-

sequently the impact of variations in technological characteristics in our analyses.

Thus we follow the former method to calculate the output elasticity of variable in-

put that is backed out from the time-varying and sector-specific production function

parameters, which is a major contribution of De Loecker et al. (2020). The pro-
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duction function method to calculate output elasticity of variable input bundle from

time-varying technological parameters (which gives us the markup measure Mu 2)

is used in parallel with our time-invariant measure (Mu 1) as a robustness check

for our results. We also calculate another markup measure (Mu 3) with output

elasticity measures backed out from a secondary production function (referred to as

PF2) that includes overhead costs reported under “Selling, General and Administra-

tive Expenses” (SG&A, denoted as XSGA in Compustat) apart from the baseline

production specification 3 (PF1).

While we directly calculate the ratio of revenue to cost of goods sold using Compu-

stat data, we use the output elasticity measures under specifications discussed above

from the data published by De Loecker et al. (2020).

In addition, for our robustness checks, we also calculate an alternative markup

measure (“cost share” markup) using the alternative method for calculating output

elasticity of input (using cost shares). We show these results in Appendix B.6.

A.2 Measuring Depreciation

To begin, we discuss the measurement of depreciation. The Securities and Exchange

Commission requires publicly traded companies to follow the Generally Accepted

Accounting Principles (GAAP). Deviations from these principles are sanctionable,

so we can assume that companies in Compustat do not follow significantly different

approaches to measuring these variables.

The value of the capital stock in the denominator is the variable PPENT from

Compustat, or Property Plant and Equipment as reported on company balance
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sheets. This is measured using accounting principles, not market valuations (for

example, by valuing each asset based on its initial value minus depreciation). In

turn, the value of depreciation is the variable DP from Compustat, which is Depre-

ciation as reported on company income statements. Depreciation in accounting is

an allocation of the value of an asset over a calculation of its expected lifetime, thus

it adds up to 100 percent of the asset’s initial value by construction. There is some

flexibility over the exact method of allocation (e.g. “straight line” vs. “declining

balance”) but over the lifetime of a typical asset this will not matter so at low fre-

quencies this measure should capture the depreciation rate regardless, provided the

estimated asset lifespans are correct.

In this paper, we estimate our main specification using annual data to take advan-

tage of the totality of the panel data available. Given that depreciation is essentially

measured using estimates of asset lifetimes, this suggests that repeating the estima-

tion using 10-year averages rather than annual data is important to check as well.

These results are reported in Appendices B.4 and B.5. Nonetheless, the GAAP allow

for revisions of asset lives based on events or circumstances that might impact them.

Since we make use of annual data, it is worth considering what kind of mechanisms

might be behind time variation in depreciation at the firm or industry level. This

could be high frequency variation, or lower frequency variation. For example, Figure

S1 displays how depreciation rates change over time for a couple of industries, indi-

cating that within industries there is indeed some variation in depreciation over time.

There is a question of whether change over time is due to volatility of the numerator

or the denominator. To discuss whether the numerator or the denominator is more
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volatile requires a measure of volatility. To measure the volatility of a variable, for

each firm, we compute the standard deviation over the sample period and divide it

by the mean. We find that the mean volatility of depreciation (the numerator) at

the firm level is 0.65. The mean volatility of the denominator is 0.61. In this sense, it

appears that the numerator and the denominator are of roughly equal importance.

Regarding the two industries in Figure S1, for Coal Mining the same statistics are

0.71 and 0.68, and for Paper Manufacturing they are 0.65 and 0.63. Thus, for these

industries, it is also the case that the volatility of the numerator and the denominator

are similar.

One reason depreciation might change over time is when there is a change in

the use of different capital goods, which could occur at high frequency or could have

secular components. In particular, it is known that IT diffused intensively starting in

the mid-1970s, see Cummins and Violante (2002). In addition, the use of intangibles

has also increased over time, see Corrado et al. (2009). Both IT and intangibles

have relatively high depreciation rates. As a result, there is a question of whether

we might be identifying industry trends in technology adoption. This is only a

confounding issue if we believe that secular changes in IT or intangibles might lead

to changes in competition through mechanisms other than changes in depreciation.

Still, it suggests checking whether trends in depreciation are correlated with levels,

and whether our results are robust to conditioning on IT adoption and intangibles

intensity.

In fact, we find that the correlation between average depreciation and the average

change in depreciation over the period at the 4 digit level is 19 percent. To condition
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Figure S1: Examples of depreciation rates for paper manufacturing and for coal
mining.
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on the possibility of trends in technological variables that might affect both depre-

ciation and competition, in Appendix B.9 we provide additional results controlling

for IT investment and controlling for intangibles intensity.

Another possibility behind time variation in depreciation is natural factors. In

particular, weather conditions - which range from mild to severe - are exogenous

events that may affect the wear-and-tear of capital equipment, as are natural disas-

ters - see (Strömberg 2007). In addition, power outages can also cause electronics to

malfunction or fail - see Steinbuks (2012) - and these are often related to weather

events such as lightning strikes - see Andersen et al. (2012). Less overt factors such as

variation in humidity, tides, and other conditions could also lead to variation in the

depreciation of equipment or structures. Human error, such as improper construc-

tion, could also lead to variation in the depreciation of structures or the depreciation

of equipment housed in those structures,2 or to the deterioration of equipment that is

not operated properly. Improper maintenance is another possible factor of idiosyn-

cratic depreciation. Some of these factors are location specific, but to the extent

that industries vary by location, these factors could lead to industry variation in

depreciation rates over time. Changes in regulation may also make particular kinds

of capital obsolesce more rapidly, which might affect industries asymmetrically.

To explore the hypothesis that the weather could be an exogenous factor affecting

depreciation, we compare firm level depreciation to weather-related damage in the

geographic area where the firm is based. We obtain data on the cost of severe

weather events (hail, wind and tornado damage) from 2016-2019 in different US

2A tragic reminder that this can occur is the Surfside building collapse of June 2021.
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states and territories from the National Oceanic and Atmospheric Administration.3

The summary statistics of the relevant variables are presented in Table S1 below.

Table S1: Summary Statistics on the Data on Costs of Weather Damage

Variable Mean Median Nr Obs
Economic Cost of Hail $33,661,963 $20,000 209
Economic Cost of Tornado $22,257,207 $685,000 209
Economic Cost of Wind $3,318,550 $1,370,000 209
Total Economic Cost of Weather Damage $59,237,721 $4,504,500 209

Notes: Data are reported by the Storm Prediction Center of the National Weather Service of the

National Oceanic and Atmospheric Administration.

We then regress the depreciation cost of each firm on the weather damage costs,

as reported in the state where the firm is headquartered as reported in Compustat,

including firm fixed effects and year dummy variables, clustering the standard errors

by state. We find a positive and significant coefficient, as reported in Table S2 below.

Table S2: Weather and Capital Depreciation

(1)
Depreciation

Cost of Weather Damage 0.003∗∗∗

(0.001)

Year Fixed Effects Yes
State Fixed Effects Yes
N 17,869
R-squared 0.017

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

While the coefficient is small, there are many reasons why the magnitude of this

3The data are estimates of property losses. Data for earlier years exist but are not comparable.

The combined data contain 17869 observations across 5646 firms in 52 US states and territories.
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coefficient is not itself very informative. For example, much of the cost of weather

events may be borne by infrastructure or households rather than firms, and some

of the operations of firms may be located in other states. Nonetheless, the sign

and significance of the coefficient offers suggestive evidence that there is a firm-level

relationship between weather severe enough to have an economic impact on the one

hand, and time-series variation in depreciation on the other. The broader point

is that there are reasons why there might be relatively high-frequency variation in

depreciation rates at the industry or firm level.
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B Robustness Checks of Empirical Results

This Appendix shows the results of various robustness checks we perform that com-

plement our main baseline results using the annual panel. Here we summarize the

robustness checks.

Section B.1 presents the baseline regressions with other technological variables

including R&D intensity, investment lumpiness and asset fixity instead of capital de-

preciation. These regressions result in statistically insignificant coefficients on these

other technological variables, highlighting the robustness of the results of deprecia-

tion.

Section B.2 presents the baseline regressions with alternative control variables and

with size variables in logs.

Section B.3 shows our robustness checks with datasets trimmed up to 2 percent

and 3 percent of top and bottom values of the ratio of cost of goods sold to sales.

Section B.4 shows the results of the baseline regression when conducted with the

decadal panel. Section B.5 shows the firm-level regression results of the baseline

regression with the decadal panel. Results are robust in terms of sign but sometimes

weaker in terms of statistical significance. This is not surprising, however, since the

decadal panel contains only about one tenth of the observations in the annual panel.

Section B.6 presents our baseline regression with an alternative measure of markups

(“cost share” markup) using the ratio of cost of goods sold to the sum of cost of goods

sold and cost of capital as the approximation of the output elasticity of input - an

alternative method for calculating markup according to De Loecker et al. (2020).
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Sections B.7 and B.8 present further robustness checks by repeating the baseline

regression with concentration measures including the Herfindahl-Hirchsman Index,

and the number of firms as the dependent variable, respectively, instead of markups.

Section B.9 performs robustness checks on the baseline regression specification

with additional four control variables including intangibles intensity, share of capital

in sale, average wage and IT investment.

In section B.10, we rerun the regressions in section B.9 with fixed assets-weighted

industry means of capital depreciation and markups. Section B.11 repeats the base-

line regression at the firm level.

Section B.12 explores whether the markup-depreciation link is present in data

for privately owned (not just publicly owned) firms. This is important not just to

determine the robustness of the results on the basis of ownership status but also on

the basis of size, as discussed in the main text. We focus on Scandinavia, as the

requisite data are available for very few firms in other countries. It turns out that

the results are robust for large firms, but not for small firms, consistent with the idea

that the competitive environment of the smallest firms is different from that of the

large players.

Finally, section B.13 presents the results linking the depreciation rate with the

firm size as the dependent variable conditional on markups in Table 6, for the other

markup measures (Mu 1 and Mu 3), with log variables for the regression of firm size

measures over depreciation as well as results unconditional on markups.
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B.1 Baseline Regressions with the Other Technological Variables

In this section, we examine whether replacing depreciation with other technological

variables yields a significant coefficient. We look at R&D intensity (R&D), invest-

ment lumpiness (LMP) and asset fixity (FIX).

Table S3 show the regression results for each of the technological variables other

than DEP (R&D, LMP, and FIX) with Mu 1 (time invariant, sector-specific, PF1),

Mu 2 (time varying, sector-specific, PF1), and Mu 3 (time-varying, sector-specific,

PF2) as markup measures, respectively.

Table S3: Markups and Alternative Technological Variables

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Mu 1 Mu 2 Mu 3 Mu 1 Mu 2 Mu 3 Mu 1 Mu 2 Mu 3

R&D 0.005 0.004 0.021
(0.039) (0.037) (0.028)

Investment lumpiness -0.079 -0.047 -0.003
(0.060) (0.058) (0.044)

Asset fixity -0.128 -0.049 -0.038
(0.116) (0.108) (0.082)

Advertising 0.086∗ 0.077 0.070∗∗ 0.101∗∗ 0.082∗ 0.080∗∗ 0.100∗∗ 0.081∗ 0.079∗∗

(0.052) (0.049) (0.034) (0.051) (0.048) (0.035) (0.051) (0.048) (0.035)

Employment share -1.543 -0.525 -0.097 -1.557 -0.608 -0.344 -1.474 -0.564 -0.335
(1.441) (1.121) (0.931) (1.383) (1.106) (0.794) (1.283) (1.071) (0.777)

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 9,864 9,870 9,885 11,340 11,346 11,359 11,337 11,343 11,356
R-squared 0.074 0.031 0.055 0.058 0.024 0.042 0.059 0.024 0.042

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Interestingly, despite demonstrated links between R&D intensity and competition

in the literature, we do not find support for that notion, possibly indicating either
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no link or a non-linear link. As Aghion et al. (2005) find an inverted U-shaped

relationship between innovation and competition. They measure competition using

the HHI. As a result, it is not clear that their findings necessarily will be reflected

in markups. We test this relationship by including the square of R&D intensity and

find no supporting evidence as shown in Table S4 below.

Table S4: Markups and the Square of R&D Intensity

(1) (2) (3)
Mu 1 Mu 2 Mu 3

R&D -0.068 -0.071 -0.024
(0.055) (0.050) (0.037)

Square of R&D 0.018 0.018 0.011
(0.011) (0.011) (0.009)

Advertising 0.087∗ 0.078 0.070∗∗

(0.052) (0.049) (0.034)

Employment share -1.663 -0.648 -0.170
(1.443) (1.113) (0.927)

Year Fixed Effects Yes Yes Yes
Industry Fixed Effects Yes Yes Yes
N 9,864 9,870 9,885
R-squared 0.077 0.035 0.056

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.2 Alternative Controls

This section presents the baseline industry regression results with log controls and

with alternative size variables in levels and logs for the annual panel.

Table S5 below presents the baseline industry results with the control variables

specified in logs rather than levels:

Table S5: Baseline Results Using Log of Advertising Expense and Log of
Employment

(1) (2) (3)
Mu 1 Mu 2 Mu 3

Depreciation 0.283∗∗∗ 0.183∗∗∗ 0.108∗∗

(0.067) (0.060) (0.046)

Log of advertising 0.015∗∗∗ 0.012∗∗∗ 0.009∗∗∗

(0.004) (0.004) (0.003)

Log of employment -0.011 -0.009 -0.007
(0.010) (0.009) (0.007)

Year Fixed Effects Yes Yes Yes
Industry Fixed Effects Yes Yes Yes
N 11,087 11,090 11,100
R-squared 0.076 0.033 0.047

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S6 below presents the baseline industry results using advertising expense

and sale as control variables:

Table S6: Baseline Results Using Advertising Expense and Sale

(1) (2) (3) (4) (5) (6)

Mu 1 Mu 2 Mu 3 Mu 1 Mu 2 Mu 3

Depreciation 0.284∗∗∗ 0.185∗∗∗ 0.109∗∗ 0.279∗∗∗ 0.179∗∗∗ 0.103∗∗

(0.067) (0.059) (0.046) (0.067) (0.059) (0.046)

Advertising 0.122∗∗∗ 0.098∗∗ 0.094∗∗∗

(0.047) (0.047) (0.034)

Sale share -2.719∗∗ -1.812∗ -1.561∗

(1.158) (1.028) (0.813)

Log of advertising 0.015∗∗∗ 0.013∗∗∗ 0.009∗∗∗

(0.004) (0.004) (0.003)

Log of sale -0.014 -0.013 -0.010

(0.014) (0.012) (0.009)

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Industry Fixed Effects Yes Yes Yes Yes Yes Yes

N 11,292 11,294 11,304 11,154 11,156 11,166

R-squared 0.070 0.030 0.045 0.075 0.033 0.046

Robust standard errors in parentheses, clustered by industry

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S7 below presents the baseline industry results using advertising expense

and fixed assets as control variables:

Table S7: Baseline Results Using Advertising Expense and Fixed Assets

(1) (2) (3) (4) (5) (6)
Mu 1 Mu 2 Mu 3 Mu 1 Mu 2 Mu 3

Depreciation 0.282∗∗∗ 0.185∗∗∗ 0.109∗∗ 0.288∗∗∗ 0.186∗∗∗ 0.108∗∗

(0.067) (0.059) (0.046) (0.066) (0.058) (0.046)

Advertising 0.109∗∗ 0.087∗ 0.084∗∗

(0.044) (0.046) (0.033)

Fixed assets share -1.407∗∗ -0.599 -0.452
(0.625) (0.535) (0.408)

Log of advertising 0.011∗∗∗ 0.009∗∗ 0.007∗∗

(0.004) (0.004) (0.003)

Log of fixed assets 0.003 0.002 0.001
(0.013) (0.011) (0.009)

Year Fixed Effects Yes Yes Yes Yes Yes Yes
Industry Fixed Effects Yes Yes Yes Yes Yes Yes
N 11,292 11,294 11,304 11,154 11,156 11,166
R-squared 0.070 0.030 0.044 0.074 0.032 0.045

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.3 Dataset Winsorized at 2% and 3% in terms of the Cost of Goods Sold to Sales

Ratio

This section shows our robustness checks with datasets trimmed up to 2% and 3%

respectively of top and bottom values of the ratio of cost of goods sold to sales. We

run the same regressions for each markup measure over each of the technological

variables (DEP, R&D, LMP and FIX) across four different versions of the dataset as

shown below. The sign and significance of the coefficient on DEP is robust, showing

that the trimming procedure is not responsible for the results.
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Table S8: Baseline Regressions on 2% Winsorized Dataset

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Mu 1 Mu 2 Mu 3 Mu 1 Mu 2 Mu 3 Mu 1 Mu 2 Mu 3 Mu 1 Mu 2 Mu 3

Depreciation 0.263∗∗∗ 0.180∗∗∗ 0.107∗∗

(0.058) (0.055) (0.041)

R&D 0.005 0.004 0.006
(0.061) (0.058) (0.034)

Investment lumpiness -0.033 0.005 0.030
(0.052) (0.047) (0.039)

Asset fixity -0.062 0.006 -0.008
(0.098) (0.093) (0.069)

Advertising 0.099∗∗ 0.080∗ 0.078∗∗ 0.088∗ 0.077 0.069∗∗ 0.096∗ 0.079∗ 0.078∗∗ 0.096∗ 0.079∗ 0.078∗∗

(0.046) (0.046) (0.032) (0.051) (0.049) (0.033) (0.049) (0.047) (0.033) (0.049) (0.047) (0.033)

Employment share -1.186 -0.400 -0.285 -2.018 -1.051 -0.501 -1.771 -0.806 -0.472 -1.733 -0.811 -0.490
(1.270) (1.061) (0.768) (1.704) (1.317) (1.014) (1.536) (1.228) (0.847) (1.488) (1.232) (0.843)

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 11,205 11,207 11,210 9,824 9,825 9,836 11,309 11,312 11,323 11,306 11,309 11,320
R-squared 0.092 0.037 0.059 0.096 0.038 0.069 0.075 0.028 0.055 0.076 0.028 0.055

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S9: Baseline Regressions on 3% Winsorized Dataset

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Mu 1 Mu 2 Mu 3 Mu 1 Mu 2 Mu 3 Mu 1 Mu 2 Mu 3 Mu 1 Mu 2 Mu 3

Depreciation 0.237∗∗∗ 0.180∗∗∗ 0.107∗∗

(0.052) (0.055) (0.041)

R&D -0.041 0.004 0.006
(0.077) (0.058) (0.034)

Investment lumpiness -0.016 0.005 0.030
(0.044) (0.047) (0.039)

Asset fixity -0.047 0.006 -0.008
(0.082) (0.093) (0.069)

Advertising 0.056∗ 0.080∗ 0.078∗∗ 0.045 0.077 0.069∗∗ 0.054∗ 0.079∗ 0.078∗∗ 0.053∗ 0.079∗ 0.078∗∗

(0.030) (0.046) (0.032) (0.030) (0.049) (0.033) (0.032) (0.047) (0.033) (0.032) (0.047) (0.033)

Employment share -0.944 -0.400 -0.285 -1.577 -1.051 -0.501 -1.309 -0.806 -0.472 -1.287 -0.811 -0.490
(1.114) (1.061) (0.768) (1.305) (1.317) (1.014) (1.242) (1.228) (0.847) (1.206) (1.232) (0.843)

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 11,172 11,207 11,210 9,764 9,825 9,836 11,263 11,312 11,323 11,260 11,309 11,320
R-squared 0.101 0.037 0.059 0.108 0.038 0.069 0.082 0.028 0.055 0.082 0.028 0.055

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.4 Decadal Panel Industry Results

Table S10 below shows regression results of the baseline specification on the dedacal

panel with decade and industry fixed effects rather than year and industry fixed

effects.

Table S10: Decadal Panel

(1) (2) (3)
Mu 1 Mu 2 Mu 3

Depreciation 0.288∗∗∗ 0.198∗∗ 0.083
(0.110) (0.096) (0.074)

Advertising 0.132∗ 0.097 0.101∗

(0.071) (0.064) (0.052)

Employment share 0.064 0.806 0.592
(1.456) (1.213) (0.944)

Decade Fixed Effects Yes Yes Yes
Industry Fixed Effects Yes Yes Yes
N 1,494 1,493 1,496
R-squared 0.086 0.033 0.058

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

B.5 Decadal Panel Firm-level Results

In this section, we repeat our baseline analysis using firm level rather than industry

level data. Here we perform the firm level estimation again, this time using the

decadal panel. Results are robust for all three markup measures. It should be

mentioned that the decadal results involve losing roughly an order of magnitude of

observations, so the fact that the results are this robust is noteworthy.
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Table S11: Firm-level Results - Decadal Panel

(1) (2) (3)
Mu 1 Mu 2 Mu 3

Depreciation 0.188∗∗∗ 0.175∗∗∗ 0.113∗∗∗

(0.058) (0.054) (0.042)

Advertising 0.066∗∗ 0.055∗∗ 0.053∗∗

(0.030) (0.028) (0.024)

Employment (Rescaled) -0.228∗∗ -0.198∗ -0.151
(0.113) (0.110) (0.110)

Decade Fixed Effects Yes Yes Yes
Firm Fixed Effects Yes Yes Yes
N 19,766 19,813 19,855
R-squared 0.021 0.012 0.009

Robust standard errors in parentheses, clustered by firm
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Employment has been divided by 1000 for ease of interpretation of the coefficients

B.6 Alternative Markup Measure (“Cost Share” Markup)

This section presents our baseline regression with an alternative measure of markups

using the ratio of cost of goods sold to the sum of cost of goods sold and cost of

capital as the approximation of output elasticity - the alternative method used for

robustness in De Loecker et al. (2020). This regression also returns a positive and

significant coefficient on capital depreciation with similar magnitude (0.29) to the

regression with the markup measures presented in the main text (Table 4).
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Table S12: Baseline Regression with Alternative Markup Measure

(1)
Costshare Markup Measure

Depreciation 0.297∗∗∗

(0.054)

Advertising 0.072∗

(0.042)

Employment share -0.578
(1.277)

Year Fixed Effects Yes
Industry Fixed Effects Yes
N 11,205
R-squared 0.113

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

B.7 Concentration Measures

In this section, we perform robustness checks using concentration measures instead of

markups as a measure of competition. A common proxy for industry concentration is

the Herfindahl-Hirchsman Index (HHI) of the market share of the largest 50 firms in

terms of value added. In addition, we also examine the shares of value added of the

largest 50, 20, 8 and 4 firms in an industry respectively as alternative concentration

measures. These concentration ratios are calculated using Economic Census data

that are available every five years, and are publicly available on the website of the

Census Bureau.4

4https://www.census.gov/programs-surveys/economic-census/data/tables.html
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HHI is calculated according to the following formula:

HHI =
N∑
i=1

s2i (4)

where si is the market share of firm i in the market, and N is the number of firms.

For example, if there are two firms in an industry and each firm has 50% share of the

market, the HHI would be equal to 2500. A higher value of HHI reflects a smaller

number of firms i.e. a more concentrated industry. The maximum HHI value is

10, 000.

Our panel is constructed using data from three years (2002, 2007 and 2012) based

on the availability of the Economic Census data. These data are then merged with

the Compustat data of the same years to form a three-period panel dataset that

contains all the required variables for our baseline specification, replacing markups

with HHIs. Table S13 presents the summary statistics on the concentration measures.

Table S13: Summary Statistics on Concentration Measures

Variable Acronym Mean Median Nr Obs
HHI in terms of value added HHI 442.74 300.20 247
Share of value added of largest 50 firms Share of VA 50 66.97 69.7 247
Share of value added of largest 20 firms Share of VA 20 54.71 55.05 250
Share of value added of largest 8 firms Share of VA 8 40.97 40.40 250
Share of value added of largest 4 firms Share of VA 4 30.55 28.70 250

We repeat the baseline regression with each of the five concentration measures

instead of markups as the dependent variable. Note that these data are available for

the manufacturing sector only, which limits the sample size of our analysis. For this
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regression, we use industry value added share as a control variable to condition on

industry size, as value added is reported alongside concentration ratios in the Census

data and are thus measured consistently.

First, results for HHIs are displayed in Table S14. The coefficient is positive and

statistically significant, confirming the robustness of our results. Results for the

other concentration measures are displayed in Table S15 below. We obtain robustly

significant and positive results for these measures as well.

Table S14: Baseline Regression with HHI as Dependent Variable

(1)
HHI

Depreciation 488.853∗

(292.982)

Advertising 0.022
(0.090)

Industry’s share of value added 8204.014∗∗

(3398.398)

Year Fixed Effects Yes
Industry Fixed Effects Yes
N 226
R-squared 0.099

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S15: Baseline Regression with Share of Value Added (VA) of the
Largest 50, 20, 8 and 4 Firms Respectively as Dependent Variable

(1) (2) (3) (4)
Share of VA 50 Share of VA 20 Share of VA 8 Share of VA 4

Depreciation 15.140∗∗ 17.991∗∗ 19.113∗∗ 19.526∗∗

(6.502) (7.634) (8.887) (9.765)

Advertising 0.001 0.001 0.002 0.001
(0.002) (0.001) (0.002) (0.002)

Industry’s share of value added 249.968∗∗∗ 359.073∗∗∗ 411.424∗∗∗ 303.103∗∗

(71.917) (89.242) (91.493) (133.660)

Year Fixed Effects Yes Yes Yes Yes
Industry Fixed Effects Yes Yes Yes Yes
N 226 226 226 226
R-squared 0.238 0.258 0.241 0.132

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

B.8 Firm Number instead of Markup as Dependent Variable

In this section, we perform a robustness check with the number of firms in each

industry at the NAICS 4-digit level instead of average markup as the dependent

variable. Data tables on the number of firms in each industry at the NAICS 6-digit

level were downloaded from the Statistics of U.S. Businesses (SUSB) section of the

Census Bureau’s website.5 Data are available starting from 1998 so when we merge

them with the Compustat data we obtain a panel dataset that covers years from 1998

to 2016. Then we re-run the baseline regression with the number of firms in each

industry as the dependent variable instead of markups. We repeat this procedure

with the number of firms in three different size bins: firms of all sizes (No. All

Firms), firms with 20 or fewer employees (No. Firms < 20), and firms with 500 or

5https://www.census.gov/programs-surveys/susb.html
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more employees (No. Firms 500+).

Before turning to the results, there are reasons why the number of firms is likely

to be problematic for our purposes. The Census Bureau reports that there are

several million firms active in the United States, the vast majority having few if

any employees other than the business owner. For example, according to the Census

Bureau, in 2018 there were 6, 075, 937 firms in the United States, of which 61 percent

have 4 or fewer employees and of which 89 percent have 19 or fewer employees. Thus,

the total number of firms includes large numbers of tiny firms that likely provide some

sort of services for larger entities in the industry or even in other industries. These

entities are unlikely to be capital intensive due to financing constraints (see Beck

et al. (2005)), so depreciation is not likely to be very important for them, and other

considerations likely determine their numbers. These businesses are also unlikely to

have any significant market power, and are also likely distributed unevenly across

industries. As a result, the number of firms could vary across industries and over

time for reasons unrelated to the factors that drive variation in competition and

markups, which are determined by the major players. Indeed, it is possible that the

determinants of competition that might lower the number of large players could in

fact provide openings for small players to enter and pick up the crumbs. In addition,

the larger firms are more likely to operate in many industries, making industry

classification more noisy.6 This was one of the reasons why we used unweighted

(rather than size-weighted) depreciation rates in our baseline analysis.

6See https://www.bls.gov/opub/mlr/2016/article/establishment-firm-or-enterprise.htm
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Table S16: Firm Number Regression

(1) (2) (3) (4) (5) (6)
No. All Firms No. Firms < 20 No. Firms 500+ Log No. All Firms Log No. Firms < 20 Log No. Firms 500+

Depreciation 2902.737∗∗ 2757.459∗∗ 22.292∗∗ 0.040 0.043 0.060
(1241.616) (1149.687) (10.118) (0.049) (0.059) (0.051)

Advertising -1129.069 -994.846 -5.534 -0.159∗∗ -0.148∗ -0.048
(1190.968) (1073.141) (10.614) (0.079) (0.077) (0.124)

Employment share 15981.439 31100.349 -83.689 13.335 13.279 4.663
(144729.778) (125644.833) (1425.922) (8.269) (10.111) (5.879)

Year Fixed Effects Yes Yes Yes Yes Yes Yes
Industry Fixed Effects Yes Yes Yes Yes Yes Yes
N 3,821 3,820 3,821 3,821 3,820 3,821
R-squared 0.038 0.037 0.018 0.065 0.051 0.084

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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As shown in Table S16 above, we find a significant and positive coefficient on capi-

tal depreciation rates when we use the number of firms in the industry as a dependent

variable. This is the opposite of what we might expect if higher depreciation makes

it harder to enter. It is consistent with our hypothesis that the number of firms

is a channel through which depreciation might affect markups, but that the actual

number of firms as reflected in the data is not suitable for measuring this directly

due to the large number of small firms that swamp the number of large players in

any given industry, as well as possibly making the classification of such firms to indi-

vidual industries harder. We verify this by repeating the regression with the number

of firms with under 20 employees, finding the same result. We also try with firms

with 500+ employees, again finding the same result - which is not surprising since

500 is an arbitrary number which likely does not identify the firms in the industry

with market power. This suggests that the competitive environment for the majority

of (small) firms is quite different from that of market leaders, something that would

be interesting to explore in future research.7 Later in Appendix B.12, we will see

further evidence that the competitive environment for smaller firms is very different

from that affecting larger, more dominant firms.

7We also performed the same robustness checks with the number of establishments as the

dependent variable and obtained similar results.
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B.9 Additional Controls

We perform robustness checks on the baseline regression specification with additional

four control variables including intangibles intensity, capital intensity (measured us-

ing the share of capital in sales), average wages (as an indicator of human capital

intensity) and IT investment intensity. As discussed in the text, some of these

variables are thought to be related to fixed costs, while the use of relatively rapidly-

increasing intangibles and IT investments has increased over time, and these might

be correlates of depreciation.

Data on IT intensity (i.e. amount of investment) by industry are obtained from the

US Bureau of Economic Analysis (BEA) fixed asset tables. We define IT investment

as the sum of expenditure on Mainframes, Personal Computers, Direct Access Stor-

age Devices, Printers, Terminals, Tape drives, Storage devices, System integrators,

Communications equipment, Office and accounting equipment, Computer systems,

and Software. We define IT intensity as expenditure on IT investment divided by

total investment.

The data to calculate intangibles intensity, capital intensity and average wage are

taken from the Compustat database. The level of intangible intensity is calculated

by taking the ratio of intangible assets to total assets (INTAN/AT) for each firm.

The average wage is calculated by taking the ratio of staff expense (XLR - a proxy

for labor cost) to total employment (EMP) at each firm. The share of labor cost in

sale is calculated by dividing labor cost by sale (XLR/SALE), then capital intensity

is calculated by subtracting 1 by the share of labor. After calculating the variables
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at the firm level, we take the mean value of each variable across all the firms in each

4-digit NAICS industry for each year from 1961 to 2016, and merge these with the IT

intensity data. We repeat the baseline regression specification with these additional

control variables.

Table S17 below shows summary statistics for these additional control variables.

The summary statistics for the variables used to calculate them are presented in

Table 1.

Table S17: Summary Statistics of Additional Control Variables (1961-2016)

Variable Mean Median Nr Obs
Intangibles Intensity .08 .04 16,981
Capital Intensity 0.52 0.72 9,471
Average Wage (Per Worker) $64,197 $26,716 9,019
IT Intensity 0.13 0.08 17,686

Notes: Industry means and medians are reported.

Cross-industry correlations between depreciation, markup measures and addi-

tional control variables, as shown in Table S18 below are slightly different (e.g.

correlation correlations between depreciation and markup variables are a bit higher)

from those shown in Table 2 due to the fact that IT intensity was taken from the

BEA dataset, which uses BEA industry groupings. BEA industry groupings largely

follow NAICS but in some cases multiple NAICS correspond to one BEA industry

code. This results in fewer industries in the merged dataset, resulting in slightly

different cross-industry correlations. Still, broad patterns of relationships between

our key variables of interest stay robust.
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Table S18: Cross-Industry Correlations of Markup, Technological Variables
and Additional Control Variables

Mu 1 Mu 2 Mu 3 DEP INT CAP AVW ITI
Mu 1 1
Mu 2 0.9529*** 1
Mu 3 0.9022*** 0.9444*** 1
DEP 0.4639*** 0.3833*** 0.2618** 1
Intangible Share (INT) 0.1046 0.0883 -0.0309 0.5857*** 1
Capital Intensity (CAP) 0.0997 0.1298 0.1607 -0.0204 -0.0243 1
Average Wage (AVW) 0.1485 0.1233 0.0499 0.0917 0.1864 0.0335 1
IT Intensity (ITI) 0.3584*** 0.2859** 0.2234* 0.6582*** 0.3047** 0.1323 0.4919*** 1

* p<0.1, ** p<0.05, *** p<0.01

The regressions are presented in Table S19 in the next page. As we can see, the

coefficient on capital depreciation remains positive and significant with additional

control variables, demonstrating the robustness of our results.
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Table S19: Baseline Regression with Additional Controls

(1) (2) (3) (4)
Mu 2 Mu 2 Mu 2 Mu 2

Depreciation 0.237∗∗∗

(0.064)

R&D 0.017
(0.034)

Investment lumpiness -0.170
(0.126)

Asset fixity -0.248∗

(0.135)

Advertising 0.096∗∗ 0.082∗ 0.095∗∗ 0.095∗∗

(0.038) (0.044) (0.042) (0.042)

Employment share 1.258 0.960 0.727 0.802
(1.049) (1.562) (1.012) (0.885)

Intangible share 0.107 0.365∗∗∗ 0.262∗∗ 0.166
(0.119) (0.131) (0.107) (0.131)

Capital intensity (Rescaled) 0.710∗ 0.742∗ 0.603∗ 0.593∗

(0.374) (0.388) (0.317) (0.335)

Average wage (Rescaled) -0.011∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.010∗∗∗

(0.001) (0.001) (0.001) (0.001)

IT intensity 0.017 0.100 0.072 0.072
(0.133) (0.167) (0.151) (0.147)

Year Fixed Effects Yes Yes Yes Yes
Industry Fixed Effects Yes Yes Yes Yes
N 6,226 5,786 6,275 6,275
R-squared 0.047 0.048 0.042 0.042

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Capital intensity and average wage variables have been divided by 1,000 and 1,000,000

respectively for ease of interpretation of the coefficients

It is interesting to observe that the coefficient on average wages is negative. If

one thought that simply having higher marginal costs would decrease competition

in the same manner as depreciation, this would suggest the opposite finding should
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be expected. However, to understand how labor costs might impact competition,

consider that generally higher wages are awarded to agents who have higher human

capital, so that a higher wage does not necessarily mean that a firm is paying more

for the same labor services - whereas a higher depreciation rate does mean that the

firm is paying a higher gross interest rate for essentially the same capital services,

as shown in the model. For example, in an efficiency wage framework, a person who

is paid $20 delivers twice as much efficiency units of labor as someone paid $10. As

a result, firms paying higher wages would hire correspondingly fewer workers as all

they need is a certain amount of efficiency units of labor: their total costs would be

identical even though their wages were higher. In such a world, the average wage

would have no link with competition.

Thinking about human capital raises the question of whether the rate of depreci-

ation of human capital might be a factor of competition. If human capital intensity,

i.e. the average wage, is related to more rapid human capital depreciation, we might

expect a positive coefficient on the average wage. Since we do not find such a coef-

ficient, this suggests several possibilities. One is that these two variables are simply

not related. Another is that, if they are related, the link between human capital de-

preciation and competition is weakened by several factors. For example, since human

capital is inalienable (see Hart and Moore (1994)), it is not an asset that the firms

own, and it takes a long time to create as it is embodied in humans who may have

several decades of training. Also, a lot of evidence indicates that labor markets have

many frictions that might create wedges between the price of labor and its productiv-

ity, including search delays, informational frictions about worker and job properties,
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bargaining frictions, and so on. At the same time, this is ultimately an empirical

question. This would be difficult to show without detailed data at the individual

level suitable for measuring human capital and its depreciation. The recent study of

Dinerstein et al. (2022) provides for the first time estimates of the depreciation rate

of human capital on average, so the profession has yet to develop depreciation rates

of human capital by sector, field or occupation, all of which would be of value to the

literature.
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The following two tables present robustness checks with Mu 1 and Mu 3:

Table S20: Baseline Regression with Additional Controls - Robustness
check with Mu 1

(1) (2) (3) (4)
Mu 1 Mu 1 Mu 1 Mu 1

Depreciation 0.324∗∗∗

(0.068)

R&D 0.024
(0.036)

Investment lumpiness -0.227
(0.139)

Asset fixity -0.290∗

(0.147)

Advertising 0.113∗∗∗ 0.097∗ 0.112∗∗ 0.112∗∗

(0.040) (0.050) (0.047) (0.046)

Employment share 0.758 0.351 -0.020 0.086
(1.188) (1.893) (1.221) (1.011)

Intangible share 0.266∗ 0.599∗∗∗ 0.471∗∗∗ 0.357∗∗

(0.143) (0.161) (0.137) (0.158)

Capital intensity (Rescaled) 0.922∗∗ 0.963∗∗ 0.781∗∗ 0.775∗∗

(0.441) (0.439) (0.358) (0.383)

Average wage (Rescaled) -0.010∗∗∗ -0.008∗∗∗ -0.008∗∗∗ -0.009∗∗∗

(0.001) (0.001) (0.001) (0.001)

IT intensity -0.003 0.123 0.079 0.083
(0.147) (0.198) (0.176) (0.173)

Year Fixed Effects Yes Yes Yes Yes
Industry Fixed Effects Yes Yes Yes Yes
N 6,223 5,780 6,268 6,268
R-squared 0.103 0.109 0.096 0.095

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Capital intensity and average wage variables have been divided by 1,000 and 1,000,000

respectively for ease of interpretation of the coefficients
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Table S21: Baseline Regression with Additional Controls - Robustness
check with Mu 3

(1) (2) (3) (4)
Mu 3 Mu 3 Mu 3 Mu 3

Depreciation 0.120∗∗

(0.050)

R&D 0.043∗

(0.023)

Investment lumpiness -0.083
(0.091)

Asset fixity -0.155
(0.110)

Advertising 0.081∗∗∗ 0.074∗∗∗ 0.081∗∗∗ 0.082∗∗∗

(0.026) (0.025) (0.029) (0.028)

Employment share 0.696 1.215 0.472 0.503
(0.873) (1.413) (0.874) (0.821)

Intangible share 0.088 0.286∗∗∗ 0.177∗ 0.118
(0.103) (0.107) (0.098) (0.118)

Capital intensity (Rescaled) 0.490∗ 0.635∗∗ 0.372 0.363
(0.261) (0.286) (0.261) (0.269)

Average wage (Rescaled) -0.009∗∗∗ -0.008∗∗∗ -0.008∗∗∗ -0.009∗∗∗

(0.001) (0.001) (0.001) (0.001)

IT intensity -0.104 -0.068 -0.077 -0.078
(0.110) (0.128) (0.116) (0.114)

Year Fixed Effects Yes Yes Yes Yes
Industry Fixed Effects Yes Yes Yes Yes
N 6,234 5,796 6,286 6,286
R-squared 0.055 0.067 0.056 0.057

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Capital intensity and average wage variables have been divided by 1,000 and 1,000,000

respectively for ease of interpretation of the coefficients
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B.10 Additional Controls with Fixed Assets-Weighted Means of Markups and Cap-

ital Depreciation

In our baseline results, we report results using unweighted measures of markups and

depreciation. This section repeats the regressions from section B.9 with fixed assets-

weighted means of markup measures and capital depreciation - so, in a sense, we are

looking at the average unit of capital rather than the average firm in the dataset.

We first trimmed the top and bottom 1% values of the size variable to avoid having

outliers drive the results, then we weighted firm measures of capital depreciation and

markups by its share of assets out of total sales in each industry before taking the

means for each four NAICS digit industry. Then, we repeat the regressions from

section B.9 with these fixed assets-weighted means instead of the regular means at

the industry level. Data in use are from 1961 to 2016. Table S22 below shows

summary statistics on these fixed assets-weighted variables.

Table S22: Summary Statistics of Fixed Assets-Weighted Variables - In-
dustry Panel

Variable Acronym Mean Median Nr Obs
Weighted Capital Depreciation Rate DEP .1417 .1197 17,232
Weighted Firm Markup (Time-Invariant, PF1) Mu 1 1.4413 1.2955 17,232
Weighted Firm Markup (Time-Varying, PF1) Mu 2 1.3770 1.2386 17,232
Weighted Firm Markup (Time-Varying, PF2) Mu 3 1.1177 1.0122 17,232

Notes: Industry-level statistics are reported. Data are from 1961 to 2016.

Regression results are presented in Table S23 below, which shows positive and

significant results for all three measures of markup. Thus, our results are robust to

using both weighted and unweighted measures.
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Table S23: Baseline Regression with Additional Controls and Fixed Assets-
Weighted Means

(1) (2) (3)
Weighted Mu 1 Weighted Mu 2 Weighted Mu 3

Weighted capital depreciation 0.678∗∗ 0.564∗∗ 0.428∗

(0.290) (0.282) (0.225)

Advertising 0.155∗∗ 0.131∗ 0.102
(0.077) (0.071) (0.065)

Employment share -16.641 -10.879 -10.132
(18.930) (17.989) (13.094)

Intangible share 0.200 0.036 -0.003
(0.240) (0.225) (0.170)

Capital intensity (Rescaled) 0.283 -0.013 -0.045
(0.365) (0.486) (0.412)

Average wage (Rescaled) -0.001 -0.003∗∗∗ -0.004∗∗∗

(0.001) (0.001) (0.001)

IT intensity 0.025 0.127 -0.047
(0.283) (0.264) (0.203)

Year Fixed Effects Yes Yes Yes
Industry Fixed Effects Yes Yes Yes
N 6,229 6,241 6,254
R-squared 0.108 0.059 0.079

Robust standard errors in parentheses, clustered by industry
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Capital intensity and average wage variables have been divided by 1,000 and 1,000,000

respectively for ease of interpretation of the coefficients
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B.11 Firm-level Regression

In this subsection, we rerun the baseline regression at the firm level instead of in-

dustry level as a robustness check.8 We use firm employment to replace industry’s

employment share out of total of all industries as a control variable. Summary statis-

tics for key variables at the firm level have been provided in Table 1. According to

the regression results presented in Table S24 below, the coefficient on capital depre-

ciation is positive and significant at the 5% level for both Mu 1 and Mu 2 which

is our main markup measure while it remains positive for Mu 3, demonstrating the

overall robustness of our results.

Table S24: Baseline Regression at the Firm Level

(1) (2) (3)
Mu 1 Mu 2 Mu 3

Depreciation 0.055∗∗ 0.042∗∗ 0.026
(0.023) (0.020) (0.017)

Advertising 0.082∗∗∗ 0.075∗∗∗ 0.061∗∗∗

(0.025) (0.023) (0.019)

Employment (Rescaled) -0.232∗∗ -0.182∗∗ -0.134
(0.094) (0.083) (0.084)

Year Fixed Effects Yes Yes Yes
Firm Fixed Effects Yes Yes Yes
N 85,965 86,294 86,573
R-squared 0.031 0.027 0.023

Robust standard errors in parentheses, clustered by firm
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Employment has been divided by 1000 for ease of interpretation of the coefficients

8For firm-level regressions, we use a 5% cutoff threshold for the markup variables as there are

many outliers.
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B.12 Robustness Checks Using the Orbis Dataset

Our baseline data are drawn from Compustat. A concern regarding the generality

of our results arises from the fact that Compustat focuses on publicly traded firms,

which are also likely to be large. There is also a question of whether the results are

US-specific.

To examine whether the industry correlation between depreciation and markups

persists outside our baseline context, we draw on Orbis, a database published by the

Bureau van Dijk which surveys large numbers of firms around the World. The use

of Orbis is not straightforward since coverage varies significantly by country and,

even for countries with many firm observations, the number of firms reporting the

data required to compute both depreciation and markups is not necessarily sufficient.

For example, given that we have a few hundred industries, we would want at least

two orders of magnitude more firms in order to have confidence that our industry

measures are reasonably well identified, yet even large economies such as Germany,

France, Italy and the UK reported fewer than 10, 000 firm-year observations with

the requisite data. We settled on using data for the Scandinavian countries (Den-

mark, Norway and Sweden), where a large number of firms report the necessary data

(22, 877 firms, for a total of 251, 647 firm-year observations for the years 2012-2022).9.

First of all, we find that the overall correlation between depreciation and markups

in these data is 0.147, which is positive and significant at the 5% level. Second, since

9The output elasticity of inputs we use is the measure that varies across industries but not

across time from De Loecker et al. (2020) (so the measure is analogous to Mu 1)
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the objective is to see whether the depreciation-markup link varies by size, we sort

the firms into quartiles by size (measured using assets). We use each quartile to

construct industry measures by size. We find that there is a statistically significant

correlation between depreciation and markups when these variables are measured

among the largest quartile. However, interestingly, this relationship is not seen in

the other quartiles. This is consistent with the idea that smaller firms may be

fundamentally different from large firms, either because they provide services to the

larger ones (i.e. there is vertical disintegration among smaller firms) or because they

use fundamentally different technology, as argued by Holmes and Stevens (2014).

It is also consistent with the idea that smaller firms are more likely to be credit-

constrained, as in Beck et al. (2005), and might thus be less capital-intensive, in

which case depreciation would matter less for them. The bottom line is that our

finding applies to larger more dominant firms that account for the bulk of output -

whether publicly traded or not - but not to smaller firms, for whom the competitive

environment appears different in ways that would be interesting to explore in future

research. Finally, it is interesting to note that, at the firm level, the depreciation-

markup link is the opposite when we look at the smallest firms. Like Appendix B.8,

this suggests that the competitive environment for the smallest firms is very different

from that of dominant firms, something that would be interesting to explore in future

work.
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Table S25: Correlations of Markup and Depreciation - Orbis

Overall Quartile 1 Quartile 2 Quartile 3 Quartile 4
Industry Correlation 0.1542** -0.0112 -0.0055 0.0888 0.1796***
Industry P-value 0.0123 0.8710 0.9344 0.1769 0.0054
Firm Correlation -0.0308*** -0.0668*** -0.0709*** 0.0080 0.0542***
Firm P-value 0.0000 0.0000 0.0000 0.5550 0.0004

* p<0.1, ** p<0.05, *** p<0.01

B.13 Firm Size and Depreciation Regressions: Robustness Checks

In Table 6, we discuss how a depreciation-driven model of competition implies that,

conditional on markups, higher depreciation results in smaller firms. We did so in the

main text using the markup measure Mu 2, to show a prediction of a depreciation-

based model of competition that is distinct from one driven by fixed costs. Specifi-

cally, conditional on markups, we would expect higher depreciation to be related to

smaller firms if it is related to marginal costs, but not if it is related to fixed costs.

Here, we show that the result is robust to using other markup measures. We

also report regression results with the level of the size variables specified in logs for

both the results unconditonally on markups and those conditionally on each markup

measure (see Tables S26, S27 and S28 in the following two pages). This is also

consistent with the model, since firm size declines with depreciation in general until

the point where a new dominant player finds it profitable to enter, as in Figure 2.
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Table S26: Impact of Capital Depreciation on Log of Firm Size Variables
Unconditionally on Markups and Conditionally on Mu 2 Respectively

(1) (2) (3) (4) (5) (6)

Log of employment Log of sale Log of fixed assets Log of employment Log of sale Log of fixed assets

Depreciation -0.333∗∗∗ 0.130∗∗∗ -2.156∗∗∗ -0.368∗∗∗ 0.092∗∗∗ -2.214∗∗∗

(0.032) (0.033) (0.041) (0.033) (0.034) (0.042)

Mu 2 -0.020 0.170∗∗∗ 0.134∗∗∗

(0.013) (0.015) (0.013)

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Firm Fixed Effects Yes Yes Yes Yes Yes Yes

N 270,566 312,692 312,692 258,601 298,195 298,195

R-squared 0.102 0.463 0.433 0.098 0.471 0.438

Robust standard errors in parentheses, clustered by firm

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table S27: Impact of Capital Depreciation on Firm Size - Conditionally on
Mu 1

(1) (2) (3) (4) (5) (6)
Employment Sale Fixed Assets Log of Employment Log of Sale Log of Fixed Assets

Depreciation -1.848∗∗ -805141.522∗∗∗ -1132635.220∗∗∗ -0.371∗∗∗ 0.090∗∗∗ -2.225∗∗∗

(0.810) (208781.205) (94889.277) (0.033) (0.034) (0.042)

Mu 1 -0.361∗ -233087.973∗∗∗ -142336.930∗∗∗ -0.016 0.167∗∗∗ 0.128∗∗∗

(0.191) (82021.165) (45139.716) (0.012) (0.014) (0.012)

Year Fixed Effects Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes
N 260,831 298,612 298,612 258,814 298,612 298,612
R-squared 0.023 0.067 0.065 0.099 0.474 0.441

Robust standard errors in parentheses, clustered by firm
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S28: Impact of Capital Depreciation on Firm Size - Conditionally on
Mu 3

(1) (2) (3) (4) (5) (6)
Employment Sale Fixed Assets Log of Employment Log of Sale Log of Fixed Assets

Depreciation -1.801∗∗ -797001.382∗∗∗ -1128076.388∗∗∗ -0.368∗∗∗ 0.094∗∗∗ -2.212∗∗∗

(0.809) (209421.833) (94878.078) (0.033) (0.034) (0.042)

Mu 3 -0.362 -216225.169∗∗ -112637.471∗ -0.018 0.230∗∗∗ 0.179∗∗∗

(0.274) (104783.056) (60269.415) (0.016) (0.018) (0.016)

Year Fixed Effects Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes
N 260,565 298,195 298,195 258,601 298,195 298,195
R-squared 0.023 0.067 0.064 0.098 0.472 0.438

Robust standard errors in parentheses, clustered by firm
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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C Analytical Results

The following material substantiates the analytical results in the paper, and also

provides additional results that are useful for the computation algorithm.

C.1 Proofs

The household solves the static problem

max
{cj,n}

(∫
y

σ−1
σ

j dj
) σ

σ−1

,

s.t.
∫
pjyjdj = I,

where pj is the price of good j and I the income of the household. Optimality

requires that the following first order condition hold almost everywhere:

y
σ−1
σ

−1

j

(∫
y

σ−1
σ

j dj

) σ
σ−1

−1

= λpj

or

y
−1
σ

j y
1
σ = λpj

Raising both sides to the power of 1− σ we obtain that

y
σ−1
σ

j y
1−σ
σ = λ1−σp1−σ

j .

Integrating both sides over j we obtain

λ1−σ

∫
p1−σ
j dj = 1.
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Finally defining the price index for consumption as P (i.e. the shadow price of

consumption in terms of income), we obtain that

P ≡ 1/λ =

(∫
p1−σ
j dj

) 1
1−σ

.

The first order condition can then be rearranged as

yj =
(pj
P

)−σ

y (5)

Finally to see that this is the correct interpretation of P as a price index for the

aggregate good y, observe that local non-satiation implies that

∫
pjyjdj = I,

or, using (5), ∫
pjy

(pj
P

)−σ

dj = I.

Rearranging, we obtain

y

(
1

P

)−σ ∫
p1−σ
j dj = I

yP σP 1−σ = I

yP = I.
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Proof of Proposition 1. The first order condition for investment is

u′ (ct) = βu′ (ct+1) [rj,t+1 + 1− δj] .

Since in equilibrium consumption is constant over time the result follows immediately.

Proof of Proposition 2. We begin by showing that, in equilibrium, N (δj) is a lower-

hemicontinuous step function that is weakly decreasing in δj. This proof follows

from the fact that V is decreasing in N and decreasing in δj. Hence, given δ, the

highest N that satisfies the free entry condition Vh ((N − 1) yh) ≥ cewt must be

weakly decreasing in δj. V is continuous in parameters, so that there must exist a

value of δj such that the entry cost is satisfied with equality. Call this δN . This

implies that for sufficiently small ε > 0 we have that N (δN − ε) = N (δN): on the

other hand, for any ε > 0, N (δN + ε) < N (δN).

The result follows from the fact that the markup equals 1
1−1/εj

=
σNj

σNj−1
.
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C.2 Computational Algorithm Outline

First, take w and I as given. Using equation (7) the firm’s static profits π
(
Ŷ−h|j

)
can be written

π
(
Ŷ−h|j

)
= max

k,l

zkαl1−α

(
zkαl1−α + Ŷ−h

I

)−1
σ

− wl − rjk − wκ

 . (6)

The first order conditions are:

p(l)yl + yp′(y)yl = w, (7)

and

p(l)yk + yp′(y)yk = rj. (8)

Further derivations show that

p′(y) =
−1

σ

1

I

(
y + Ŷ−k

I

)−1−σ
σ

,

and

yl = (1− α) y/l, yk = αy/k.

Now suppose that in the industry there are Nj ∈ N∗ firms. If within industries all

firms are identical then (7) and (8) respectively imply that

(1− α) (y)
σ−1
σ

[(
N

I

)−1
σ

− 1

σ

1

I

(
N

I

)−1−σ
σ

]
= wl, (9)
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and

α (y)
σ−1
σ

[(
N

I

)−1
σ

− 1

σ

1

I

(
N

I

)−1−σ
σ

]
= rjk. (10)

These combine to determine the optimal capital-labor ratio k̃:

k̃j ≡
k∗
j

l∗j
=

wα

rj(1−α)

. (11)

Replacing this into (9) we obtain

l∗j = w−σ

[
z

σ−1
σ (1− α)

(
wα

rj(1−α)

)ασ−1
σ

[(
N

I

)−1
σ

− 1

σ

1

I

(
N

I

)−1−σ
σ

]]σ
(12)

Thus, given values of w and I and N , we can compute l∗j and k∗
j . Then, if y

∗ (N) is

the output produced by a firm when there are N firms present, then

π
(
Ŷ−h|j

)
= π ((N − 1) y∗ (N) |j)− wtκ

and

Vh

(
Ŷ−h,t+1|j

)
= π ((N − 1) y∗ (N) |j)÷ (1− β (1− δf ))

Using this, in each industry we find the optimal number of firms using:

N∗ (δj) = max {N ∈ N∗ : Vh ((N − 1) y∗ (N) |j) ≥ cew} .

Define

N =
{
N ∈ N∗ : ∃δ ∈

[
δ, δ̄
]
with N = N (δj)

}
.
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Proposition 1 (Supplemental). In equilibrium, there exists a decreasing function

∆∗ : N → R+ such that the number of firms in the industry is at least N ∈ N∗ if

δ ≤ ∆∗ (N). For values of ∆∗ (N) in the interior of
[
δ, δ̄
]
, ∆∗ (N) is continuous in

w.

Proof of Proposition 1. (Supplemental) We are assuming an equilibrium exists, so

N ̸= ∅. For each N ∈ N define

∆∗ (N) = sup
{
δj ∈

[
δ, δ̄
]
: Vh ((N − 1) y∗ (N) |j) = cew

}
.

The first result follows from the fact that N (δj) is decreasing and lower hemicon-

tinuous. The second result follows from the continuity of decision rules in the wage.

So far we have assumed a value for w, and a guess of income I. We assume

capital markets clear using Walras’ law: given N∗ (δj) and k∗
j we can compute the

total capital of each tyle. Then, it should be clear that l∗j is strictly decreasing in

w in all industries and that N is weakly decreasing in w. Thus labor demand is

strictly decreasing in w. To see this, note that labor demand is

Ld =

∫
l∗jN

∗ (δj) dF (δ)

=
∑
N∈N

∫
l∗jN × 1 [∆∗ (N + 1) < δ ≤ ∆∗ (N)] dF (δ)

where 1 is the indicator function. In equilibrium Ld must be continuous in the wage

S55



as ∆∗ (N) is continuous in the wage. Labor supply is

Ls = 1− ceϵ− κµ.

The total mass of firms is

∫
dµt =

∫
N∗ (δj) dF (δj)

=
∑
N∈N

∫
N × 1 [∆∗ (N + 1) < δ ≤ ∆∗ (N)] dF (δ)

so that

ϵ = δfµ.

As we raise w we lower the labor demand of each firm, and also lower the number

of firms, so Ld is strictly decreasing in w between zero and infinity. Lowering the

number of firms lowers ϵ, also between zero and infinity, so the labor supply is weakly

increasing, so given I there must be a wage that clears the labor market. This could

be a candidate wage as long as ce is not so high that entry is not profitable in the

first place: then there would be no firms (the Ld curve should be truncated at some

point where entry is not profitable).

Finally, let In be our initial guess of income I. Having used it to derive the model

decision rules, we can compute income implied by this guess, which is

In+1 = wt (1− ceϵ− κµ) +

∫
rjtkjtdj +Π(µt) .
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We solve for equilibrium by using In+1 as a new guess, and iterating on the above

procedure until ∥In+1 − In∥ < ε for some tolerance level ε.

Finally, assuming we have found an equilibrium, we can show that

Proposition 2 (Suppemental). If ∆∗ (N) is in the interior of
[
δ, δ̄
]
, the value of

∆∗ (N) is continuous in parameters.

Proof of Proposition 2. (Supplemental) The result follows from the fact that N (δj)

is decreasing and lower hemicontinuous, and the continuity of decision rules in the

relevant parameters.

This implies that the equilibrium value of I will be continuous in parameters as

well. The model thus allows us to have an integer number of firms in each industry

and endogenous rents while having a continuous response of aggregates to policy

variables. This is a useful result as it implies that the model framework is suitable

for policy experiments.

S57



References

Ackerberg, D. A., Caves, K., and Frazer, G. (2015). “Identification Properties of

Recent Production Function Estimators”. Econometrica, 83(6):2411–2451.

Aghion, P., Bloom, N., Blundell, R., Griffith, R., and Howitt, P. (2005). “Com-

petition and Innovation: An Inverted-U Relationship”. Quarterly Journal of

Economics, 120(2):701–728.

Andersen, T. B., Bentzen, J., Dalgaard, C.-J., and Selaya, P. (2012). “Lightning, IT

Diffusion, and Economic Growth across US States”. Review of Economics and

Statistics, 94(4):903–924.
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