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1 Introduction

An extensive literature studies the impact of economic uncertainty on aggregate activity.

There is a general consensus that uncertainty tends to lead to declines in aggregate economic

activity. This applies even when economic uncertainty is measured net of any shocks to levels

of fundamentals that might coincide with increases in uncertainty �see Baker and Bloom

(2013).

However, there is less consensus regarding the key channels through which this occurs.

Examples include the real options channel, which relies on investment irreversibility to induce

caution in investment decisions when uncertainty is high, and the risk aversion channel, which

leads �rms to experience higher borrowing costs in uncertain times.1

This paper tests the real options channel by looking at industry variation. We argue

that a key implication of the irreversibility underlying the real options channel is that they

do not a¤ect industries symmetrically. In particular, we identify a new way in which real

options considerations and the delays in investment they induce can interact with uncer-

tainty: the increased misallocation of resources induced by caution in investment decisions.

We show that, in the empirically relevant range of depreciation rates, this channel will be

most deleterious to growth in industries where depreciation is relatively rapid.

We develop a parsimonious model of industry dynamics in the presence of investment

irreversibilities. Firms have opportunities to grow or shrink based on their idiosyncratic pro-

ductivity, which varies according to a Markov process as in Hopenhayn (1992). Investment

irreversibilities have two e¤ects on investment patterns that are related to uncertainty. First,

they introduce a motive of caution. Firms will not wish to actively invest nor disinvest, since

any current or future disinvestment is imperfectly reversible, unless there is a signi�cant

mismatch between their productivity and their existing capital stock. Second, when �rms

do invest, it is because this mismatch is large, so they are more likely to invest in "lumps."

Lumpy investment is a feature of investment dynamics known at least since Doms and Dunne

(1998).

Into this environment we introduce uncertainty shocks, de�ned as periods when the

productivity process is a mean-preserving spread of what is observed in normal times.2 We

argue that irreversibilities lead uncertainty and capital depreciation to interact in important

ways. The key is that rapid depreciation leads mismatches between the �rm�s productivity

1See Dixit and Pindyck (1994) and Gilchrist et al (2014). See also Bloom (2014) for a recent survey.
2The model can be interpreted in terms of common productivity shocks, purely idiosyncratic productivity

shocks or any combination thereof.
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and the �rm�s capital stock to develop more rapidly. When depreciation is low, mismatch

occurs mainly due to productivity change: if productivity does not change or changes little,

the capital stock remains similar to what it was before. When depreciation is high, mismatch

occurs rapidly even when productivity does not change much. In times of high uncertainty,

with both capital depreciating rapidly and productivity being unstable, mismatch is more

frequent and labor productivity declines as a result of increased misallocation. This also

means that investment lumps are more frequent in industries with rapid depreciation, as �rms

who do not experience any signi�cant change in productivity nonetheless �nd themselves

having to reinvest to maintain a reasonable scale of operations. Consequently, industries

where capital depreciation is higher will likely grow disproportionately slowly in times of

high uncertainty. We calibrate the model economy and �nd that it is consistent with all

these hypotheses. In particular we �nd that uncertainty shocks particularly depress labor

productivity growth (as well as output) in industries with rapid depreciation, and that

�rms in these industries experience more frequent investment lumps, consistent with the

"misallocation" hypothesis.

Interestingly we also �nd that, as depreciation approaches 100 percent, the misallocation

e¤ects disappear and uncertainty particularly favors growth, as in Oi (1966), Hartman (1972)

and Abel (1983). However, this is because such rapid depreciation makes irreversibility costs

irrelevant: the "bounds of inaction" in investment disappear and there is less room for

misallocation. In the calibrated model we �nd that these e¤ects are only important for

depreciation rates outside the empirically relevant range.

Finally, we test these key predictions �that depreciation and lumpiness are correlated,

and that high-depreciation industries and high-lumpiness industries should grow dispropor-

tionately slowly in times of high uncertainty �using data on manufacturing industries and

uncertainty shocks from a large number of countries.3 We show these results are robust to

a variety of controls, and to allowing for other industry characteristics that might be sup-

portive of alternative mechanisms for uncertainty to a¤ect growth. We conclude that real

options mechanisms, resulting from partial investment irreversibilities, are key for under-

standing the response of growth to uncertainty shocks. We also conclude that a canonical

model of investment irreversibilities captures all these features.

This paper contributes to the long-run debate about the main sources and propagation

mechanisms of uncertainty. Real options theory shows that when investment is irreversible,

3We focus on manufacturing industry growth data because of the di¢ culty of identifying large cross-
country data sets with service sector data: naturally a study using a broader set of industries would be a
useful extension.
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greater uncertainty induces caution among �rms, slowing reallocation of resources and lower-

ing aggregate productivity. In contrast, risk aversion theory argues that when �rms are risk

averse, greater uncertainty (including a greater risk of default) may lower economic activity

by increasing the cost of external funds. See for example Gilchrist et al (2014) and Alfaro

et al (2016). Our results identify the real options channel as the key mechanism through

which uncertainty leads to declines in economic activity. Speci�cally, we identify the role of

irreversibility through the depreciation rate and investment lumpiness.

This study also relates to the capital misallocation literature, for example Hsieh and

Klenow (2009) and Bartelsman et al. (2013). Eisfeldt and Rampini (2006) emphasize the

importance of capital misallocation for understanding business cycles. In contrast, we discuss

the increases in capital misallocation due to wait-and-see e¤ects in response to uncertainty

shocks (as in Bloom (2009)), and argue that the source of such misallocation is linked to

rapid capital depreciation. We show that there exists a "range of inaction" even though

�rms face capital misallocation during uncertainty, and that the impact on misallocation of

this range is related to depreciation rates.

Our �ndings also contribute to the long literature on real options and �exibility in man-

ufacturing, including Kulatilaka and Marks (1988), McDonald and Siegel (1985,1986) and

Dixit and Pindyck (1994). Flexibility in manufacturing can be interpreted as machine �ex-

ibility, material handling system �exibility or operational �exibility. Our model provides a

parsimonious model of the irreversibilities which cause in�exibility in �rm�s investment deci-

sions, as well as providing new evidence to the importance of �exibility in the manufacturing

sector.

Finally, this paper contributes to the literature on industry dynamics over the business

cycle. Braun and Larraín (2005) �nd that industries dependent on external �nance grow

disproportionally slowly in business cycles. Samaniego and Sun (2016) study a broad set

of industry characteristics and show that growth in labor intensive industries is especially

sensitive to contractions. This paper focuses on industry depreciation rate and lumpiness,

and adds value to the literature by revealing more dimensions of industry technological

features underlying aggregate �uctuations.

Section 2 describes the model economy. Section 3 provides a quantitative analysis of the

model economy and derives empirical predictions. Section 4 outlines the estimation strategy

and Section 5 describes the data to be used. Section 6 delivers the empirical results and

robustness checks. Section 7 delivers concluding remarks.
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2 Model Economy

We begin with a canonical model of �rm dynamics with investment irreversibilities. It builds

on the model of Hopenhayn (1992), where �rms experience productivity shocks that a¤ect

their optimal input use, and adds partial investment irreversibilities. Time is discrete and

there is a continuum of �rms in the industry.

The environment is subject to uncertainty shocks. Variable vt 2 f0; 1g is a volatility
variable, where vt = 1 is referred to as an uncertainty shock. The volatility process evolves

according to vt+1~Fv (vt+1jvt). In what follows we will de�ne an environment where �rms
experience idiosyncratic shocks that depend on the level of volatility, yet volatility itself has

no e¤ect on the level of fundamentals �in this case, expected productivity. Thus, there are

no aggregate shocks other than volatility itself.

Firms are subject to idiosyncratic productivity shocks. The volatility variable v which

a¤ects the evolution of idiosyncratic productivity shocks. Denote a �rm�s productivity in pe-

riod t as zt 2 Z � R, where zt+1~Fz (zt+1jzt; vt+1). Assume Fz (zt+1jzt; 1) is a mean-preserving
spread of Fz (zt+1jzt; 0) for all zt 2 Z. Notice this implies that expected productivity does not
depend on the realization of vt. We will maintain all other aspects of the environment con-

stant so that uncertainty is characterized solely as a mean-preserving spread of productivity

shocks: there are no shocks to levels of economic fundamentals nor other level variables in

the system. Any impact on levels of economic activity will be due to changes in the optimal

investment policies of �rms.

Firms own their own capital, which they may purchase at price pk and which depreciates

at rate �. New capital is created through investment of a �nal good as in a typical growth

model, so we set the �nal good as the numeraire and set pk = 1 accordingly. In order to

remove capital, however, a share � 2 (0; 1) of it is destroyed � so its resale price is only
1� �. Parameter � represents the extent of partial investment irreversibility. The presence

of � can be interpreted as being due to capital being customized upon installation �so that

it does not transfer with full functionality when sold to other �rms �or because capital is

damaged in the removal process.

Each period a number of entrants e is born, drawing their initial productivity zt from a

distribution  (zt). A given �rm closes at the end of each period with probability � (zt).4

Agents in this environment discount the future at rate i.

4We assume that when the �rm shuts down its value is zero: in a di¤erent context Samaniego (2006b)
argues this will likely be the case in practice as the owners�stake in a failing �rm will be eaten up by other
claims on the �rm�s assets.
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The �rm produces a good at price p which is set to one without loss of generality since

it only has a level e¤ect. It pays a wage w for each unit of labor it hires.

Remark 1Notice that we have set prices to be constant over time. An equivalent assump-

tion would be to make the pricing process part of the productivity process.5 One interpretation

of our environment is that it describes a small open economy where prices are largely given

by conditions in international markets, and where wages are rigid at a cyclical frequency as

in for example Shimer (2012). Regardless, the main assumption we wish to ensure is that

uncertainty shocks have no level e¤ects, so as to isolate the impact of uncertainty on behavior

net of any level e¤ects. As mentioned, the empirical literature makes great e¤ort to identify

separately the impact of uncertainty shocks and of level shocks that might coincide with them,

see for example Baker and Bloom (2013).

Given the stationarity of the economic environment, it lends itself to analysis using

recursive optimization techniques. The �rm�s value function is

V (z; k�1; v) = max
n;k

�
zk�n� � wn� (k � k�1)� �max f0; k�1 � kg+ 1� � (z)

1 + i
EV (z0; k (1� �) ; v0)

�
(1)

where k�1 = 0 for newborn �rms.

2.1 Solution of the �rm�s problem

Samaniego (2006a) shows in a continuous time context without uncertainty that this class

of problems can be analyzed using standard recursive techniques by specifying two di¤erent

control variables, investment u � 0 and disinvestment h � 0, and setting

k = k�1 + u� h. (2)

Extending this insight to our environment, we are able to prove the following:

Lemma 1 The solution to the problem in equation 1 is the same as the solution to one

where k is not a control variable and is instead determined by 2.

Proposition 1 Optimal capital k� (z; k�1; vt) is characterized by two thresholds �k� (z; v) <

5Note that since producivity zt, wages and prices will enter the �rm�s investment decisions multiplicatively,
it is without loss of generality to assume that any two of them are constant over time as long as their evolution
is described by a Markov process.
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k� (z; v) that do not depend on k�1 such that:6

k� (z; k�1; vt) =

8>><>>:
k� (z; v) if k�1 > k� (z; v)

�k� (z; v) if k�1 < �k� (z; v)

k�1 if k�1 2
�
�k� (z; v) ; k� (z; v)

� (3)

The proof of Proposition 2:1 hinges on the fact that the expected future value of the �rm
1��(z)
1+i

EV (z0; k (1� �) ; v0) does not depend at all on k�1. This means that, if �rms choose

to invest or disinvest, the derivative of this expression will optimally be set to equal either

�1 or � � 1 respectively �which does not depend on k�1 either. Thus, �rms whose value
of k�1 is below a certain threshold will invest up to �k� (z; v), and �rms whose value of k�1
is above a certain threshold will disinvest to k� (z; v). Since 1��(z)

1+i
EV (z0; k (1� �) ; v0) can

be shown to be decreasing in k, �k� (z; v) is strictly less than k� (z; v). Firms in between

exercise their options to neither invest nor disinvest �waiting for further information on

their production opportunities zt and volatility vt �in which case their expected future value

will fall in between these two bounds (�1; �� 1). As a result, the optimal investment rules
are characterized by a "range of inaction"

�
�k� (z; v) ; k� (z; v)

�
, where neither investment nor

active disinvestment occurs.

2.2 Equilibrium

De�ne the measure �t : Z � R+ to be the measure over �rm types (zt; kt�1) at date t. Let

I (�) be an indicator function that equals one if its argument is true and zero otherwise. The
state of the economy evolves according to

�t+1 (z;k) =

Z
k2R+

Z
z02z

Z
z2Z

I (k� (z; k; vt) 2 k) dFz (z0jz; vt+1) d�t (z; k) (4)

for all Borel sets (z;k) � Z �R+. If Z is discrete then (4) can be translated accordingly so
that z is any number or subset of numbers in Z.

De�nition 1 An equilibrium of the model economy is an initial condition (�0; v0) and a

sequence f�t; vtg1t=1 such that vt follows the Markov process Fz and �t satis�es equation 4.
Proposition 2 Suppose sup fz 2 Zg < 1. An equilibrium of the model economy exists

such that output at all �rms is �nite. Also there exists kmax <1 such that �t (z; k : k > kmax) =

0 for t � 1.
6See Veracierto (2008) for a similar result in a context with asymmetric labor adjustment costs. The

same applies to Proposition 2:2 below, which is an industry implication of Proposition 2:1.
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Proposition 3 Suppose Z has �nite values. Then there is a �nite set K � R+ and
T <1 such that �t (z; k : k 62 K) = 0 for t � T .

Propositions 2� 3 have the following useful implications. If the support of z is bounded,
then above a certain date the capital stocks of all �rms will be bounded. This is useful

for computing the model economy as we just need to identify the bounds on capital and

focus on initial conditions that lie within those bounds. Notice that in our environment

there is no notion of a steady state equilibrium unless Fv equals the identity matrix, i.e.

the uncertainty state of the economy does not change over time. This implies that our

model economy cannot be calibrated by matching certain statistics from the data to those

generated in a model steady state: we will have to run large numbers of simulations of the

model economy during the calibration process.

2.3 Growth and Uncertainty

An implication of this model is the following. Suppose that the range of inaction is not

very sensitive to the value of the volatility parameter. This is likely to be the empirically

relevant case: while the distribution of idiosyncratic productivity varies with the value of vt,

the overall variance in zt likely swamps any di¤erences in those variances across volatility

regimes. Nonetheless, industry features may make some �rms more sensitive to volatility

di¤erences than others.

Under this assumption, it should be clear that the depreciation rate � is going to be a key

determinant of the extent to which there is mismatch between z and k. If z does not change

much over time, a low value of � means that there will be little mismatch between z and k for

a while. In times of high uncertainty there may be a bit more mismatch since productivity

is more volatile. In contrast, if � is high, mismatch may develop rapidly. When uncertainty

is low this may actually be a good thing, because when there are negative productivity

shocks the �rm can adjust to them by depreciating. When uncertainty is high however the

rapid depreciation means that there are two factors contributing to potential mismatches,

productivity volatility and rapid depreciation.

It is di¢ cult to provide an analytical result about this because of the fact that decision

rules depend on k�1. Industry growth in this environment depends on the distribution of

k�1, which is an endogenous variable. Thus, we turn to quantitative analysis to test whether

the above intuition holds out in a calibrated version of our model economy.
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3 Quantitative analysis

We now calibrate the model to match a typical industry according to US data. Then we

examine how industry growth depends on the presence or absence of volatility shocks.

Our calibration strategy will be somewhat unusual. Typically in a model of this type

where there are counterfactual experiments one calibrates the model to match a hypothetical

steady state and then performs experiments. In our case, however, our model industry

switches between volatility regimes. Thus we adopt a calibration strategy that does not

assume a steady state at any given point in time. Instead, we assume values for certain

parameters, and match the remainder by simulating the model economy for a large number

of �rms over a large number of periods, comparing the moments of the model economy with

the statistics we wish to match.

Since we are not calibrating a steady state, our calibration requires the simulation of the

model over several periods including both high and low volatility regimes. We simulate the

behavior of 1000 �rms, over 1400 periods, and discard the �rst 400 periods to ensure any

assumptions on initial conditions are washed out.7 The volatility process evolves according to

Fv and �rm values of zt follow Fz (�). Firm investment and therefore industry growth result

from the �rms following the optimal investment and employment rules described above.

When a �rm exits it is replaced by an entrant with a value of z drawn randomly from  (�).
Industry growth is de�ned as the log growth rate in the sum of output across all the �rms.

Notice that this exercise has several interpretations. One is that it measures the di¤erence

in industry growth on average in an environment where uncertainty is purely idiosyncratic,

i.e. there are no aggregate shocks other than the process vt itself. Another however is that

we are looking at di¤erences in industry growth when zt might have common elements across

�rms. When taking averages over large numbers of simulations, these two will yield the same

results, thus our results are informative about the impact of uncertainty purely through the

idiosyncratic productivity, through aggregate productivity, or any combination of the two,

net of any level shocks. This is important because in the data there are several approaches

to measuring uncertainty: our simulation results should speak to all of them.

Before listing the calibration parameters we need to parameterize the distributions Fv
and Fz as well as the exit function � (�) and the entry function  (�). Fv is a matrix that

7The initial conditions assume that the volatility is low and that �rm productivities are random draws
from the ergodic distribution of Fz (�; 0).
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describes the probability of switching between volatility regimes. We set it equal to:

Fv =

"
0:878 0:0122

0:4 0:6

#
:

This matches the average duration of high and low uncertainty regimes in the data to be

considered later.

To complete the calibration process we require values of the set of shocks Z. We select

a large number of shocks so that inertia in �rms�decisions is not mainly guided by inertia

built into the calibrated model by simply having few z values. We choose 60 values8 of z,

log-distributed evenly between 0:5 and 2. This provides a wide range of �rm sizes.9 Then,

we assume that Fz (z0jz; 0) is a discretized version of log zt+1 = log zt + "t+1, and we assume
that the standard deviation of "t+1 equals a parameter �. When volatility is high we assume

that Fz (z0jz; 1) is a discretized version of log zt+1 = � (zt) log zt+ "t+1 and that the standard

deviation of "t+1 is � (1 + !), ! > 0. The factor � (zt) is chosen for each z to ensure thatR
z0dFz (z

0jz; 1) =
R
z0dFz (z

0jz; 0)8z: in other words, it is set so that Fz (z0jz; 1) is a mean-
preserving spread of Fz (z0jz; 0).10

As for � (�), we assume that � (z) declines exponentially from �max down to zero as z

rises. This captures the fact that larger �rms tend to exit less often. The speci�c functional

form is � (z) = �max log[max(z)]�log[z]
log[max(z)]�log[min(z)] .

For  (�), we assume that  (z) declines with z, matching the well known fact that entrants
are typically smaller than incumbents. The speci�c functional form is  (z) = (max(z)�z)+ � P

z02Z  (z
0) .

As � !1, the distribution becomes uniform.
The following parameters remain to be calibrated: �, �, i, �, e, w, � , �max, �, � and !.

We set e = w = 1 without loss of generality. These are all essentially scale parameters

and do not a¤ect the response of the model economy to uncertainty.

We set � = 0:63 and � = 0:25, as in Samaniego (2010). We set i to equal 2 percent, a

standard number in the business cycle literature.

8Relates studies typically use under 10 values of z to conserve computational resources when there are
many dimensions of heterogeneity as here. We found that working with 30 provided negligible di¤erences to
results.

9In the calibrated economy the largest �rm is over a million times larger than the smallest.
10Notice that for low uncertainty we approximate a random walk, and for high uncertainty we have

persistence parameters that are set to ensure uncertainty is a mean preserving spread. The reason for
the random walk assumption is that, given that we are using a discretized range for zt, there will be
mean reversion regardless. When we generated several thousand values of zt we found that the computed
autocorrelation was about 0:72. This is similar to Samaniego (2010), which has lumpy investment due to an
irreversible technology updating decision rather than a simple investment irreversibility as we have here.
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As a benchmark we set � = 0:0827. This is the median value across the industries in the

data to be presented in more detail later.11 Later we consider � 2 [0:06; 0:11], which is the
empirically relevant range in our data.

The volatility parameter ! is set to equal 0:5. The literature does not provide much

guidance regarding this parameter so we set it so as to be signi�cant but not so large as for

�rm volatility when v = 1 to be too much larger than when v = 0. We �nd that this value

also roughly replicates the di¤erences in the response of industry growth to volatility across

industries with di¤erent values of � observed later in the data.12

It remains to calibrate the parameters �, �, � and �max. We select these parameters using

simulated annealing (Bertsimas and Tsitsiklis (1993)) so as to match some key moments of

the data on industry dynamics:

1. The share of entrants that are "small", i.e. one third the size of the average �rm or

less in terms of employment �see Samaniego (2008).

2. The 5-year exit rate of new �rms �see Evans (1987).

3. The average 5-year exit rate �see Evans (1987).

4. The share of �rms experiencing a lump in investment �de�ned as in Doms and Dunne

(1998) as an investment of more than 30 percent of the current capital stock. This

value is 6 percent.13

The model matches these statistics reasonably well in spite of its simplicity. We also �nd

that the model reasonably matches the share of investment that occurs in lumps, which in

the data is 25 percent. In the model it is a bit lower at 19 percent, not far o¤.

We �nd in the calibrated economy that, as proven, the disinvestment threshold k� (z; v) is

more than the investment threshold �k� (z; v) for any z; v. In addition we �nd that �k� (z; 0) >
�k� (z; 1) for most values of z : when volatility is higher, �rms invest more conservatively. See

Figure 1. We also �nd that k� (z; 0) < k� (z; 1) : when volatility is higher, the threshold for

�rms to disinvest is higher (i.e they are also more conservative). In other words, the range

11The data are based on US manufacturing industries, with depreciation measured by the US Bureau of
Economic Analysis.
12In our empirical results, the coe¢ cient on value added is such that the di¤erence in industry growth in

times of high uncertainty between the industries with the highest and lowest values of � is about 1:4 percent.
In Figure 2 below, this di¤erence in the model is about 1:2 percent.
13The published version of Doms and Dunne (1998) reports a di¤erent number, but entrants and exiters

are excluded from that sample. Six percent is the value in the panel that includes entry and exit. This is
also the median industry value in Compustat.
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Table 1: Calibrated parameter values

Parameter Value Source
� 0:63 Samaniego (2010)
� 0:25 Samaniego (2010)
i 0:02 Business cycle literature
� 0:0827 UNIDO data
� 4:5743 See text
�max 0:1548 See text
� 0:1 See text
� 0:0218 See text
! 0:5 See text

Table 2: Model Statistics

Statistic Model Data Source
Small entrants 0:80 0:74 Samaniego (2008)
Average exit 0:22 0:22 Evans (1987)
Entrant exit 0:37 0:37 Evans (1987)
Lumpy �rms 0:05 0:06 Doms and Dunne (1998)
Lumpy investment 0:19 0:25 Doms and Dunne (1998)
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of inaction is larger when volatility is high. That said, the di¤erences are quite small. This

can be seen in that in Figure 1 the slopes of the edges of the surfaces have a similar slope

to the volatility axis line: the range of inaction is not obviously very di¤erent �at least for

the benchmark parameterization.

0

Volatility

5

0

Productivity

lo
g

k

5

2.5 1

10

2 1.5 1 0.5 0

Figure 1 �Decision rules. The upper surface is the disinvestment

threshold �k� (z; v) for given values of z and v. The lower threshold is the

investment threshold k� (z; v) for given values of z and v.

3.1 Experiments

Having calibrated these parameters we measure industry growth in the simulated economy in

high and low volatility regimes. We compute this separately for a variety of di¤erent values

of �. We de�ne the empirically relevant range of � as that we observe in the data to be

presented later, from about 6 percent to about 11 percent. We compute this by running the

experiences of a large number of �rms as described earlier. It is worth underlining that, while

our volatility process is described as being aggregate and having an impact on idiosyncratic

productivity, the same statistics obtain if all �rms have common shocks.

Figure 2 displays how growth in the high and low uncertainty regimes varies on average

depending on �. Several observations stand out. First, when � is low �rms tend to grow faster

when uncertainty is high. However the di¤erences are small. It is clear that, as hypothesized,

when � is high industry growth is much slower when uncertainty is high.

13



What does Figure 2 tell us about the aggregate impact of uncertainty shocks? The median

industry in terms of � is one where industry growth is not particularly sensitive to uncertainty

shocks. Instead, the aggregate impact of uncertainty shocks will be driven by what happens

particularly in the high-� industries. The model suggests that these industry di¤erences are

an important part of the impact of uncertainty on the aggregate economy.

Another implication is that the impact of uncertainty on di¤erent economies will depend

on their industry composition. Countries which, for whatever reason, specialize in low-�

industries may be insensitive to uncertainty shocks, whereas countries which specialize in

high-� industries may be more sensitive to uncertainty.

As a result, Figure 2 suggests an empirical test of the model: testing whether industries

with high depreciation rates display grow disproportionately slowly compared to other in-

dustries in the presence of uncertainty shocks. A test of this kind can be used to test the

real options channel of the impact of uncertainty shocks on economic growth.
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Figure 2 �Response surfaces for average growth when uncertainty

is high and when uncertainty is low, as a function of �. The values

were computed in simulations of the model economy for 1000

values of �.

Figure 3 suggests why this may be happening: in industries with high �, labor produc-

tivity growth is slower when v is high. Since labor is allocated e¢ ciently (conditional on
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k and z) this must be because capital is signi�cantly misallocated in those industries when

uncertainty is high, less so when uncertainty is low. In contrast, when � is high, capital de-

preciation within the zone of inaction is not an important factor of misallocation regardless

of uncertainty.
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Figure 3 �Average labor productivity growth when uncertainty is high

and when uncertainty is low as a function of �. The values were

computed in simulations of the model economy for 1000 values of �.

Another prediction of our model is that high � is related to more frequent lumps in

investment, because it leads to more frequent mismatches between productivity and capital.

Figure 4 illustrates this prediction in the context of the model. This suggests that another

way to test our mechanism would be to see whether in the data industries with higher � also

experience more frequent investment lumps, as in Figure 4.
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Figure 4 �Relationship between depreciation and the share

of �rms experiencing an investment lump on average in the

calibrated economy.

Finally, if high � is related to high lumpiness, we have an additional prediction we might

use to test the real options channel of the impact of uncertainty shocks on economic growth:

seeing whether industries with high investment lumpiness grow disproportionately slowly

compared to other industries in the presence of uncertainty shocks. Indeed, Figure 5 shows

that the calibrated economy displays this feature.

In the remainder of the paper, we will test the predictions found in Figures 2� 5:

1. lumpiness and depreciation should be related across industries;

2. industries with high depreciation should grow disproportionately slowly in the presence

of uncertainty shocks; and

3. industries with high lumpiness should grow disproportionately slowly in the presence

of uncertainty shocks.
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Figure 5 �Response surfaces for average growth when uncertainty

is high and when uncertainty is low, as a function of lumpiness. The

values were computed in simulations of the model economy for 1000

values of �. The graph represents di¤erent combinations of observed

lumpiness and industry growth.

Finally, it is worth noting that these e¤ects are for empirically reasonable values of

depreciation rates. Suppose instead that � = 1. In this case, since capital depreciates

fully every period, no �rm every pays the irreversibility cost �. Thus, there is no scope for

misallocation (given that parameter value), and �rms set capital k to equal their optimal

values (conditional on �) � i.e. there is no range of inaction. Substituting this into the

production function, the production function will be a function of z
1

1�� , i.e. a convex function

of z. It is easy to show that the expected value of output under such circumstances is

increasing in uncertainty. Thus �rms will tend to grow faster in a high uncertainty regime

relative to a low uncertainty regime.

More formally, suppose that � = 1, and that the productivity process for zt+1 does not

depend on zt. In this case k will be chosen optimally so that k� (z; v) / z
1

1�� , and output
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will be xz
1

1�� , where x is a constant. As a result, average output will be

Y (v) =

Z
xz

1
1��dFz (z; v) = x

Z
z

1
1��dFz (z; v)

We have that
R
zdFz (z; 0) =

R
zdFz (z; 1) by assumption. Observe that z

1
1�� is a convex

transformation of z: thus, Y (0) < Y (1) and the economy will grow when volatility increases

(and shrink when volatility decreases): uncertainty promotes growth. If we allow the pro-

ductivity process for zt+1 to depend on zt, the economy would transit more slowly between

the ergodic distributions of Fz (�jz; 0) and Fz (�jz; 1) (which will be a mean-preserving spread
of Fz (�jz; 0)) but the environment with v = 1 would experience faster growth than when

v = 0 along this transition.

Indeed, Figure 6 shows that this is the case: as � approaches unity, uncertainty becomes

bene�cial to growth. This is consistent with Oi (1996), Hartman (1972) and Abel (1983), who

�nd that when �rms can adjust in the face of uncertainty, uncertainty may bene�t investment

and growth. What happens is that for empirically relevant ranges of � the in�exibility induced

by the adjustment cost � is signi�cant, so the misallocation e¤ect dominates. It is interesting

that the value of � above which Oi-Hartman-Abel e¤ects dominate is about 0:4, well outside

the empirically relevant range. In this paper the empirically relevant range is about 0:06

to 0:116, based on our manufacturing data. The turning point in Figure 6 after which the

negative interaction of uncertainty and growth starts to weaken is around 0:14, again outside

the empirically relevant range.
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Figure 6 �Response surfaces for average growth when uncertainty

is high and when uncertainty is low, as a function of �. The values

were computed in simulations of the model economy for 1000

values of �.

4 Empirical strategy

Our objective is to see whether certain industry technological characteristics �namely capital

depreciation rates and lumpiness rates �lead industries to be more sensitive to uncertainty

shocks. To do so, we estimate the following equation:

Growthc;i;t = �i;c + �i;t + �c;t + �(UncertaintyShockc;t�1 �Xi) + �Controlsi;c;t + �c;i;t (5)

In equation (5), Growthc;i;t is a measure of growth in industry i in country c at date t.

The dummy variables �i;c + �i;t + �c;t capture all date- or country-speci�c factors that might

a¤ect growth in industry i, or factors a¤ecting overall growth in country c at a particular

date, including all economy-wide shocks. All that remains are factors that speci�cally a¤ect

growth in industry i in country c at date t.

Xi is a technological factor of interest that characterizes the production function of indus-

try i (such as the depreciation rate), and which is hypothesized to interact with uncertainty.
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It appears in equation (5) interacted with UncertaintyShockc;t�1, which is an uncertainty

shock measured at date t � 1. Thus the coe¢ cient � is the di¤erential impact of industry
characteristic Xi on industry growth when uncertainty in the previous year is high. Pooling

data for many industries, years and countries gives our estimation strategy more statistical

power and gives our results more generality.

Since � captures the di¤erence in industry growth in uncertain times relative to normal

times for industries with di¤erent levels of Xi, � 6= 0 indicates that growth in industries with
high Xi is more sensitive to uncertainty. For example, if Xi measures the depreciation rate

of capital, then � < 0 would indicate that industries that use rapidly depreciating capital

grow particularly slowly when there is uncertainty. Conversely � > 0 would indicate that

such industries grow particularly fast when there is uncertainty.

Our control variables Controlsi;c;t include an interaction (LevelShockc;t�1 � Xi). The

variable LevelShockc;t�1 is a country- and year-speci�c measure of the level of economic

activity at date t�1. We interact it with the technological variable Xi also because, as is well

known in the literature, increases in uncertainty may coincide with downturns in economic

activity, and the level e¤ects may interact with technological variables too. Thus we wish

to condition on �rst moment measures of the level of economic activity. The overall level

is already captured by the dummy �c;t, so the coe¢ cient � captures any residual industry-

speci�c impact of level shocks (including the impact of uncertainty shocks on levels of overall

economic activity) on industry growth based on technological measure Xi.

The need to condition on level shocks raises the possibility of endogeneity: the level and

uncertainty e¤ects may be correlated and also endogenous. See Baker and Bloom (2013).

One way we handle this is precisely by looking at industry growth rather than aggregate

growth. Any omitted variables that cause both growth and uncertainty (as well as level

shocks) should be picked up by the �c;t indicators. In addition, we condition on possible

interactions of level e¤ects and the technological variables. The potential endogeneity of

uncertainty is already controlled for because speci�cation (5) is based on past uncertainty,

and current year growth cannot cause past uncertainty. We also deal with the possibility of

any residual endogeneity in industry growth by using instrumental variables, as suggested

in Baker and Bloom (2013) in the context of aggregate growth. In this case, both level

and uncertainty shocks would need to be instrumented. Given a set of instruments for the

level and moment shocks Instr (c; t� 1), the instruments to be used when the instrumented
variable is an interaction with the level and moment shocks as in speci�cation (5) are of the

form Instr(c; t� 1)�X(i), see Wooldridge (2002).
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Since the number of group-speci�c e¤ects in this estimation equation is very large,14 the

computational cost of estimating (5) is signi�cant. Instead, we proceed by subtracting from

all dependent and independent variables the mean value for each (c; t), (i; t) and (c; i) pair

so that the dummy variables �i;c; �i;t and �c;t are removed from the estimation equation. We

call these variables \Growthc;i;t, \(UncertaintyShockc;t�1 �Xi) and \Controlsc;i;t. Then, we
estimate (5), using the de-meaned variables, and without �i;c+�i;t+�c;t among the regressors.

In the Appendix we show that this is equivalent to estimating the following speci�cation:

\Growthc;i;t = � \(UncertaintyShockc;t�1 �Xi) + � \Controlsi;c;t + �c;i;t (6)

To estimate (5) using instrumental variables, we use the well known two stage least

squares approach to instrumental variables estimation (TSLS). This involves regressing the

endogenous dependent variables on the others, including dummies and instruments. We must

thus modify the demeaned speci�cation (6) so as to implement the TSLS procedure. Since

the TSLS procedure requires that the large number of dummy variables should be included

at both stages, we apply the demeaning procedure at both stages in order to deal with them �

see Appendix for derivations. We also use limited information maximum likelihood (LIML),

�nding similar results (see Appendix).

The exact error structure for this procedure is not known so we use a variety of ap-

proaches, �nding that the results are robust. These methods include bootstrapping, allowing

for heteroskedasticity using the Huber-White method, clustering by industry, and allowing

for autocorrelated errors.15 The results reported use bootstrapped errors.

Country- or date-speci�c factors that a¤ect a given industry will be absorbed by the indi-

cator variables in equation (5) �including the impact of uncertainty on overall growth. Then,

any interaction between uncertainty and Xi indicates that characteristic Xi is important for

understanding how uncertainty shocks impact industry growth.

14Since there are about 60 countries, 28 industries and 42 years, we would have over 50; 000 �xed e¤ects
in a balanced panel.
15Bertrand et al (2004) argue that di¤erences-in-di¤erences speci�cations may su¤er from problems with

autocorrelated errors. However this relates to speci�cations where there is a persistent treatment vs. non-
treatment variable. In our context there is no such problem because of the constellation of country-time and
industry-time dummies. When we estimate the speci�cation allowing for autocorrelated errors the estimated
autocorrelation coe¢ cient is small, around 0:01.
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4.1 Discussion

Some further comments on our estimation strategy are in order. First, we seek industry

technological indicators Xi that are representative of the technology of production across

countries. Suppose for example that Xi represents the frequency of lumpy investment. The

identi�cation strategy does not require measures of the observed lumpiness at �rms in in-

dustry i in each country, nor at each date. Observed lumpiness is not a strictly technological

variable, as it may be a¤ected by current economic conditions such as the level of uncertainty

at date t in country c; or by country conditions including the frequency of uncertainty shocks

in country c. Instead, we seek a benchmark measure of lumpiness that �rms in industry i

would adopt in a relatively undistorted environment �which, when distorted by uncertainty

in country c at date t, might particularly impact �rms in industry i. Following the related

literature, we will measure the technological variables Xi such as depreciation using US data

and, where possible, using data on publicly traded �rms in the US, whose technological

choices are unlikely to be distorted by �nancing di¢ culties or by other frictions in normal

times �see Rajan and Zingales (1998), Ilyina and Samaniego (2011) and Samaniego and Sun

(2015) among others.16

We also explore whether our industry-based strategy �nds evidence of any important

role for �nancial markets in either the origination or propagation of uncertainty shocks, a

key question in the literature.17 This is important because of our focus on depreciation

and on investment lumpiness. Theory suggests that industries with rapid depreciation and

where capital is more likely to be �rm-speci�c are also those where the ability to use capital

as collateral to raise external funds is weakest �see Hart and Moore (1994). In addition,

Ilyina and Samaniego (2011) �nd that investment lumpiness is linked to external �nance

dependence. As a result, the risk-aversion theory of uncertainty might also predict that

these industry variables interact with uncertainty shocks.

We verify that our results are not due to the risk-aversion theory in four ways. First, we

include a measure of external �nance dependence (Rajan and Zingales (1998)) in our list of

technological variables. Second, we also look at R&D intensity, which Ilyina and Samaniego

16Even so, we do �nd that our technical measures are correlated across time and space. Regarding time,
Ilyina and Samaniego (2011) show that the rankings of industries according to most of our industry measures
computed by decades persist over the period (1970-2000). Regarding country variation, the data simply do
not exist to measure industry characteristics in each country separately � except for labor intensity or
"LABi". We computed LABc;i for each country c and industry i following the procedure described later.
Then for each country we computed the cross-industry correlation between LABc;i and LABi as measured in
the US �our technological measure. We found that this correlation was positive and statistically signi�cant
at the 5 percent level in 49 out of the 54 countries for which data were available.
17See for example Arellano et al (2012) or Gilchrist et al (2014).
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(2011) argue is the technological basis of external �nance dependence. Third, we use labor

intensity and asset �xity as additional technological variables that the literature �nds to be

sensitive to �nancial frictions. Fourth, we condition on an interaction of technology with

�nancial crisis indicators (Laeven and Valencia (2013)). These might be expected to interact

with depreciation and lumpiness too if �nancial channels are important.

5 Data

5.1 De�ning Uncertainty

We require a measure of uncertainty that can be measured for many countries. We follow

Baker and Bloom (2013) in de�ning uncertainty using data from bond markets. We do this

because we are using data from a broad selection of countries, so that bond yields (largely

based on government bond data) provide information about overall country conditions.18

Uncertainty is measured using the average quarterly volatility of daily percentage changes

in bond yields. Bond market volatility we view as capturing uncertainty concerning safe

assets, possibly indicating the undiversi�able or unhedgable portion of uncertainty, including

economy-wide uncertainty e.g. uncertainty stemming from the sovereign�s policy or default

decisions. Thus we also refer to it as systemic uncertainty.19

5.2 Instrumental variables

As mentioned, there is some concern in the literature that level shocks and second mo-

ment shocks (uncertainty) could be jointly determined. This is one factor motivating our

di¤erences-in-di¤erences speci�cation with a complete constellation of (i; c), (i; t) and (c; t)

dummy variables: endogeneity between aggregate �rst and second moment shocks is con-

trolled for, only e¤ects that are speci�c to industries in a particular country in periods of

18Baker and Bloom (2013) also report other measures of uncertainty, based on stock market volatility,
cross-sectional return dispersion and exchange rate volatility. We used those measures and found no robust
interactions with industry variables. This is not surprising since stock markets are not very deep in many
developing economies, and since vulnerability to external shocks likely varies across countries. Thus bond
market uncertainty is likely to be the best indicator of volatility for a broad set of countries.
19Jurado et al (2015) measure uncertainty using the component of macroeconomically important measures

that is unforecastable based on a wide array of time series. We do not adopt this approach to measuring
uncertainty as such an approach requires a large set of time series to identify unforecastable events, which
would be challenging to perform in a consistent manner for many countries. In any case, we �nd that, for
the US, the annual macroeconomic uncertainty series of Jurado et al (2015) at a quarterly frequency has a
correlation with the Baker and Bloom (2013) bond market uncertainty series of 0:27, statistically signi�cant
at the 1 percent level.
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uncertainty such as the interaction of second moment shocks and technology will be picked

up by our interaction coe¢ cients. Rajan and Zingales (1998) introduce the methodology for

this reason, albeit in a context and without a time panel.

We also account for endogeneity by using a standard instrumental variables procedure.

We employ instruments that have been found to be appropriate in the related literature.

Speci�cally, Baker and Bloom (2013) use measures of exogenous "disasters" as instruments

�see their paper for further details:

1. Natural Disasters: Extreme weather and geological events as de�ned by the Center

for Research on the Epidemiology of Disasters (CRED). Industrial and transportation

disasters are not included.

2. Terrorist Attacks: high casualty terrorist bombings as de�ned by the Center for Sys-

temic Peace (CSP).

3. Political Shocks: An indicator for successful assassination attempts, coups, revolutions,

and wars, from the Center for Systemic Peace (CSP) Integrated Network for Societal

Con�ict Research. There are two types of political shocks: forceful or military action

which leads to the change of executive authority within the government, and a rev-

olutionary war or violent uprising led by politically organized groups outside current

government within that country.

Each of these country-year indicator variables is interacted with the industry technolog-

ical measure of interest. This interaction variable is the relevant instrument in our context,

where the independent variables to be instrumented (uncertainty shocks times industry char-

acteristics) are themselves interaction variables, see Wooldridge (2002).20

5.3 Industry outcomes

WemeasureGrowthc;i;t in three ways: (1) the log change in industry value added, as reported

in the INDSTAT3 and INDSTAT4 databases, distributed by UNIDO; (2) the log change in

20As mentioned, Baker and Bloom (2013) test the validity of these instruments with respect to aggregate
growth. Sargan tests con�rmed the statistical validity of our interaction instruments with respect to uncer-
tainty and industry growth. The exception is with one of our 3 industry outcome measures, index growth.
In this case, the instruments were valid (and results were similar) if we dropped one of our four interaction
instruments, terrorism shocks.
An econometric procedure that is robust to weak instruments is LIML. We repeated our estimation using

LIML, �nding almost identical results. See Appendix.
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gross output; and (3) the log change in the Laspeyres production index. Having three

di¤erent growth measures gives the results considerable robustness.

These variables are reported for 28 manufacturing industries based on the ISIC-revision

2 classi�cation in INDSTAT3. We use only countries for which there are at least 10 years of

observations. To avoid the in�uence of outliers, the 1st and 99th percentiles of Growthc;i;t
are eliminated from the sample. We lose some countries as uncertainty data in Baker and

Bloom (2013) are not available for the whole globe. This generates a sample of 60 countries

from 1970 to 2012. The panel is unbalanced, and the sample sizes vary across countries

and industries as some of the data were not reported by national statistical agencies. The

Appendix lists the country sample and the number of observations for each country. Data

from 1970 to 2004 are from INDSTAT3, while data from 2005 to 2012 are from the successor

dataset INDSTAT4. The United States is not included in the regressions because it is the

benchmark economy for measuring industry technological variables.

5.4 Industry Technological Measures

Our exercise requires a de�nition of �technology.�Since the work of Kydland and Prescott

(1982), theoretical business cycle analysis is commonly performed within the context of mod-

els of economic growth. We follow the conventions of growth theory by de�ning �technology�

in terms of the production function. We identify industry di¤erences in the production tech-

nology using factor intensities, or using the qualitative attributes of factors of production,

an approach that dates back to at least the seminal work of Cobb and Douglas (1928). For

example, di¤erences between the technology for producing Food Products (ISIC 311) and the

technology for producing Transport Equipment (ISIC 381) can be described in terms of the

former being less R&D intensive and less labor-intensive than the latter. Our technology in-

dicators include measures of labor intensity, R&D intensity, asset �xity, capital depreciation,

and the lumpiness of investment.

The di¤erent technological measures are calculated using U.S. data and are assumed to

represent real industry technological characteristics in a (relatively) unregulated and �nan-

cially frictionless environment. Technological di¤erences among industries are assumed to

be persistent across countries, meaning that the rankings of these indices are stable across

countries (or would be in the absence of uncertainty shocks), although index values in each

country do not necessarily have to be the same.21 See Rajan and Zingales (1998), Ilyina and

21The measures below are drawn from Ilyina and Samaniego (2011) and Samaniego and Sun (2015), and
represent averages over the period 1970-2000. Industry measures computed using the Compustat database
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Samaniego (2011) and Samaniego and Sun (2015) for related discussions.

� Capital depreciation: we compute the industry rate of depreciation (DEPi) using the
BEA industry-level capital �ow tables.

� Investment lumpiness: As in Ilyina and Samaniego (2011), lumpiness (LMPi) is de�ned

as the average number of investment spikes per �rm during a decade in a given industry,

computed using Compustat data. A spike is de�ned as an annual capital expenditure

exceeding 30% of the �rm�s stock of �xed assets, as in Doms and Dunne (1998).

In addition to these variables which are suggested by the model, to account for the

possibility that we are capturing �nancial channels rather than real options channels we

include some variables that the related literature has found to be related to the intensity of

�nancing constraints:

� External �nance dependence: Many studies such as Rajan and Zingales (1998) �nd
that the industry tendency to draw on external funds is related to growth and/or the

business cycle. As such, any interaction of this variable with uncertainty could indicate

the importance of �nancial channels for the propagation of uncertainty shocks. We

measure external �nance dependence (EFDi) as the share of capital expenditures not

�nanced internally, see Rajan and Zingales (1998) for details.

� R&D intensity: R&D intensity is closely related to �nance dependence (Ilyina and

Samaniego (2011, 2012), so it could interact with uncertainty if �nancial sources or

channels are important. R&D intensity (RNDi) is measured as R&D expenditures

over total capital expenditures, as reported in Compustat.

� Asset �xity: Braun and Larraín (2005) argue that asset �xity is a key determinant
not of the need for external �nance but of the ability to raise external funds, so an

interaction of �xity with uncertainty could be indicative of �nancial sources or channels

for uncertainty. Asset �xity (FIXi) is the ratio of �xed assets to total assets, computed

using Compustat data following Braun and Larraín (2005).

� Labor intensity: Hart and Moore (1994) argue that human capital is inalienable and
thus is related to the ability to borrow. Samaniego and Sun (2015) �nd that labor

intensive industries are more sensitive to the business cycle, particularly in �nancially

are median �rm values for each industry unless otherwise stated.
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Table 3: Correlation Matrix of Industry Technological Characteristics

Industry variable EFD DEP RND LAB FIX
DEP .09 � � � �
RND .79** .09 � � �
LAB .05 .39** .17 � �
FIX .09 .19 .39** .22 �
LMP .50** .39** .61** .31 .73**

Note: EFDi (external �nance dependence), DEPi (depreciation), RNDi(R&D intensity), LABi (labor intensity), FIXi

(�xity) and, LMPi (investment lumpiness) are the average of 70s, 80s and 90s from Ilyina and Samaniego (2011). ** signi�cance

level 5%

underdeveloped economies, so that if �nancial channels are important for uncertainty

we might expect labor intensity to interact with uncertainty as well. As in Ilyina and

Samaniego (2011), labor intensity (LABi) is measured using the ratio of total wages

and salaries over the total value added in the US, using UNIDO data.

Table 3 shows the matrix of correlations among the technological measures. Notably,

DEPi and LMPi are positively correlated, as predicted by the model. Depreciation and

lumpiness are correlated with some other variables, however, so it is not ex ante clear how

to interpret an interaction of a particular technological variable with uncertainty �unless

the interactions of its correlates are not signi�cant or not robust.

5.5 Control variables

In the empirical literature on industry growth it is common to condition on the share of

industry i in manufacturing in the previous period, to control for mean reversion, structural

change, or other secular factors of industry growth. We do so too.

Given the likely correlation between �rst and second moment shocks, we condition on

interactions of the technological variables with �rst moment shocks as well. Since uncertainty

is measured using bond yield volatility, the �rst moment shock is the average daily 10-year

Government bond yield. In addition, Samaniego and Sun (2015) �nd that technological

characteristics may interact with contractions, so we condition on interactions of contractions

and the technological variables as well, as a non-linear control for business cycle e¤ects.

Contractions are de�ned using a standard peak-trough criterion as implemented by the

NBER, see Samaniego and Sun (2015) for details. Our results concerning uncertainty turn

out not to be sensitive to the presence of this control.
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As mentioned, in one of our robustness exercises we condition on whether or not the

interactions of interest are robust to including an interaction of technology with a �nancial

crisis indicator. We draw on the Systemic Banking Crises Database developed by Laeven

and Valencia (2013), which covers the period 1970 to 2011. We de�ne the variable Crisisc;t
to equal one if the Database considers country c at date t to be experiencing a banking crisis,

and zero otherwise. A year-country pair is determined to be in crisis if there are signi�cant

signs of �nancial distress in the banking system (bank runs, signi�cant bank losses or bank

liquidations, and if there is signi�cant policy intervention in response to losses in the banking

system). Then, we use Crisisc;t �Xi as a control for each technological variable Xi, to see

whether the results are driven by crises rather than uncertainty and to see whether there are

�nancial channels for uncertainty.

6 Findings

6.1 Empirical results

We estimate the basic regression equation (5) using the three measures of industry growth

as the dependent variable and inserting the interaction terms of uncertainty with the techno-

logical variables one by one. Results are in Table 4. There are several statistically signi�cant

interactions of technology indicators with systemic uncertainty. However, the only technolog-

ical variables that interact robustly with uncertainty �in the sense that there is a signi�cant

interaction regardless of the measure of industry growth �are depreciation DEPi and in-

vestment lumpiness LMPi. We conclude that the key interactions of interest are between

uncertainty and these two technological variables, DEPi and LMPi, as found in the model.

We also �nd that other technological interactions associated with �nancial frictions are not

robust in that they either have inconsistent sign or inconsistent statistical signi�cance: for

example we do not �nd that external �nance dependence (EFDi) interacts with uncertainty

shocks. In addition, Ilyina and Samaniego (2011) argue that the deep technological char-

acteristic underlying external �nance dependence is in fact R&D intensity: we do not �nd

evidence of an interaction between uncertainty and RNDi either. Nor do we �nd interactions

with the �nancial ability variables, LABi and FIXi. We thus conclude that real options con-

siderations �rather than �nancial frictions �are responsible for these results. The absence

of evidence linking uncertainty with �nancial dependence is consistent with the �ndings of

Caldara et al (2016), who �nd that while uncertainty may sometimes have an impact on

�nancial markets they are not the main source thereof.
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Table 4: Basic Results
This table represents results from the following regression:

Growthc;i;t= �i;c+�i;t+�c;t+�(UncertaintyShockc;t�1�X i) + �Controlsi;c;t+�c;i;t

We only report �. Each cell represents one regression. The dependent variable is industry value added growth rate, output
index growth rate and gross output growth rate. Independent variables are the following: EFDi(external �nance depen-

dence), DEP i(depreciation), RNDi(R&D intensity), LABi(labor intensity), FIX i(�xity) and LMP i(investment

lumpiness), are the average of 70s, 80s and 90s from Ilyina and Samaniego (2011). Standard errors in parentheses, *** p<0.01,

** p<0.05.

Industry growth measure Growthc;i;t
Xi Value added Output index Output
DEP -.284*** -.00679*** -.139**

(:0576) (:00258) (:0540)
LMP -.676*** -.0233*** -.297***

(:189) (:0060) (:0765)
EFD -.256* -.0134* .0201

(:144) (:0060) (:0420)
RND -.188 -.0243** -.145**

(:127) (:0099) (:0724)
LAB -3.709*** -.0167 -.788

(1:275) (:0329) (:554)
FIX 2.163* .108*** 1.263**

(1:162) (:0381) (:534)
Obs 16,149 15,115 16,152
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Another way to see whether our �ndings regarding LMPi and of DEPi are related to

�nancial constraints �as opposed to real options considerations �is to compare our uncer-

tainty measures with the �nancial crisis indicator Crisisc;t . We �nd that the correlation

between Crisisc;t and uncertainty is quite high. The correlation is 9:29 percent and very

highly statistically signi�cant. The relationship remains highly statistically signi�cant even

when we condition on country �xed e¤ects. This suggests that there could be a �nance-

uncertainty link. Then, we introduce into our speci�cation an additional control in the form

of an interaction variable of the technological variables with the �nancial crisis indicator

Crisisc;t . The speci�cation becomes:

Growthc;i;t = �i;c + �i;t + �c;t + �(UncertaintyShockc;t�1 �Xi)

+ �C(Crisisc;t �Xi) + �Controlsi;c;t + �c;i;t

If �nancial frictions, not real options, are the true cause of our observed interactions, we might

expect these measures to interact with crises, or expect that adding the crisis interaction as

a control variable might reduce the statistical signi�cance of our coe¢ cient of interest �.

We �nd that, �rst of all, the impact on industry growth of the interaction of LMPi and

of DEPi with systemic uncertainty is robust to the inclusion of this control variable, indeed

it remains statistically signi�cant for all three measures of industry growth. See Table 5.

In contrast, the interactions of Crisisc;t with LMPi and with DEPi are not signi�cant.

Thus, our �ndings are not due to uncertainty coinciding with �nancial crises, nor are these

interactions likely due to �nancial frictions.

Finally, recall that in the model these results obtain because the misallocation emerging

from the interaction of uncertainty and depreciation slows labor productivity. We de�ne

labor productivity in the UNIDO data as value added in each industry divided by the

number of employees. Table 6 shows that indeed for depreciation and lumpiness there is a

negative interaction: those industries have disproportionately low labor productivity growth

in uncertain times, providing further evidence of the misallocation e¤ect that results from

the interaction of depreciation and uncertainty.

7 Conclusion

We develop a canonical model of investment irreversibility and argue that it is a natural

consequence of such models for growth to be more sensitive to uncertainty shocks in industries

where depreciation is rapid. In addition, in such industries we would expect investment to
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Table 5: Controlling for Banking Crises
This table represents results from the following regression:

Growthc;i;t=�i;c+�i;t+�c;t+�(UncertaintyShockc;t�1�X i)

+�C(Crisisc;t �Xi) + �Controlsi;c;t+�c;i;t

We only report �and �C . Each cell represents one regression. The dependent variable is value added, output index and
output growth rate respectively. Independent variables areDEP i(depreciation) and LMP i(investment lumpiness), are the

average of 70s, 80s and 90s from Ilyina and Samaniego (2011). Standard errors in parentheses, *** p<0.01, ** p<0.05.

Industry variable Xi

Growthc;i;t Interaction DEP LMP
Value added Crisisc;t �Xi -.0829 .0256

(:0981) (:273)
UncertaintyShockc;t �Xi -.295*** -.702***

(:0550) (:208)
Output index Crisisc;t �Xi .00234 .00147

(:00381) (:0105)
UncertaintyShockc;t �Xi -.00668*** -.0234***

(:00254) (:00727)
Output Crisisc;t �Xi .0220 .285

(:0717) (:242)
UncertaintyShockc;t �Xi -.142** -.303***

(:0610) (:0904)

Table 6: Labor Productivity Results
This table represents results from the following regression:

LabProdGrowthc;i;t=�i;c+�i;t+�c;t+�(UncertaintyShockc;t�1�X i) + �Controlsi;c;t+�c;i;t

We only report �and �C . Each cell represents one regression. The dependent variable is labor productivity growth. Indepen-
dent variables are the following: DEP i(depreciation) and LMP i(investment lumpiness), are the average of 70s, 80s and

90s from Ilyina and Samaniego (2011). Standard errors in parentheses, *** p<0.01, ** p<0.05.

Xi Coe¢ cient
DEP -17.58***

(3:428)

LMP -44.91***
(8:915)

Obs 16,006
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be more lumpy, a key mechanism through which this e¤ect occurs that industries with

rapid depreciation experience disproportionately low labor productivity when uncertainty

is high. We then use a di¤erences-in-di¤erences speci�cation to show that industry growth

data from a large set of countries are consistent with these predictions. We conclude that the

misallocation introduced by investment irreversibilities are an important mechanism through

which uncertainty has an impact on economic outcomes.

More broadly, our study provides an anatomy of how uncertainty a¤ects di¤erent parts

of the macroeconomy, in order to better understand the aggregate impact of economic uncer-

tainty. The interaction of irreversibilities with depreciation and lumpiness is also something

that could be useful in future studies trying to identify real options e¤ects, and the general

strategy of looking at industry interactions to identify microeconomic features that are dif-

�cult to measure directly (such as irreversibilities) could be useful more broadly to explore

topics other than the interaction of uncertainty and irreversibilities.
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Technical Appendix (not for publication)

A Econometric procedure

We estimate a case of the following model

Yict = �i;c + �i;t + �c;t +Xict� + "ict (7)

where i is industry, c is a country, t is a year. The coe¢ cients �i;c; �i;t and �c;t are

regression coe¢ cients on indicator variables for (i; c), (i; t) and (c; t) pairs respectively. We

have that c 2 f1; Cg, t 2 f1; Tg and i 2 f1; Ng. Also, the panel is unbalanced, so the
number of observations is not C � T �N . C is the total number of countries, T year and N
the total number of industries. Xict is a vector of independent variables [Xict1 Xict2:::]

0 :

In order to estimate (7), we transform it so as to eliminate �i;c; �i;t and �c;t: First , we

de�ne the mean of Yict and Xict by i; c; t. We use the "dot" notation for means for brevity.

For example, Y ic: is the mean of Yict averaging over di¤erent values of t: Y i:t is the mean of

Yict by c: Y ::: is the mean by i; c and t. Thus,

Y ic: =
1

Tic

TicX
t=1

Yict

Y i:t =
1

Cit

CitX
c=1

Yict

Y :ct =
1

Nct

NctX
i=1

Yict

Y i:: =
1

Cit

1

Tic

CitX
c=1

TicX
t=1

Yict

Y ::t =
1

Nct

1

Cit

NctX
i=1

CitX
c=1

Yict

Y :c: =
1

Tic

1

Nct

TicX
t=1

NctX
i=1

Yict

Y ::: =
1

Tic

1

Nct

1

Cit

CitX
c=1

TicX
t=1

NctX
i=1

Yict
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Similarly ,

X ic: =
1

Tic

TicX
t=1

Xict

X i:t =
1

Cit

CitX
c=1

Xict

X :ct =
1

Nct

NctX
i=1

Xict

X i:: =
1

Cit

1

Tic

CitX
c=1

TicX
t=1

Xict

X ::t =
1

Nct

1

Cit

NctX
i=1

CitX
c=1

Xict

X :c: =
1

Tic

1

Nct

TicX
t=1

NctX
i=1

Xict

X ::: =
1

Tic

1

Nct

1

Cit

CitX
c=1

TicX
t=1

NctX
i=1

Xict

Similar notation applies to �i;c; �i;t and �c;t.

First, we subtract the average over t, so that (7) becomes (notice the terms �ic are gone):

Yict � Y ic: =
�
Xict �X ic:

�0
� +

�
�it � �i:

�
+
�
�ct � �c:

�
+ ("ict � "ic:) (8)

Then de-mean (8) over c, yielding

Y i:t � Y i:: =
�
X i:t �X i::

�0
� +

�
�it � �i:

�
+
�
�:t � �::

�
+ ("i:t � "i::) (9)

Then subtract (9) from (8) (notice �it is gone) :

Yict�Y ic:�Y i:t+Y i:: =
�
Xict �X ic: �X i:t +X i::

�0
�+
�
�ct � �c: � �:t + �::

�
+("ict � "ic: � "i:t + "i::)

(10)

Now we de-mean (10) over i :

Y :ct�Y :c:�Y ::t+Y ::: =
�
X :ct �X :c: �X ::t +X :::

�0
�+
�
�ct � �c: � �:t + �::

�
+(":ct � ":c: � "::t + ":::)

(11)
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Then subtract (11) from (10)(notice �ct is gone):

Yict � Y ic: � Y i:t + Y i:: � Y :ct + Y :c: + Y ::t � Y ::: (12)

=
�
Xict �X ic: �X i:t +X i:: �X :ct +X :c: +X ::t �X :::

�0
�

+ ("ict � "ic: � "i:t + "i:: � ":ct + ":c: + "::t � ":::)

Thus, we can rewrite (12) in the following form, and estimate the following equation:

eYict = fX 0
ict� + e"ict (13)

where eYict = Yict � Y ic: � Y i:t + Y i:: � Y :ct + Y :c: + Y ::t � Y :::eXict = Xict �X ic: �X i:t +X i:: �X :ct +X :c: +X ::t �X :::e"ict = "ict � "ic: � "i:t + "i:: � ":ct + ":c: + "::t � ":::

We can estimate � using:

b� = �fX 0
ict
eXict

��1 eXict
eYict

and the standard errors using:�
#�1fX 0

ict
eXict

��1 1p
#
fX 0

icte"ict
=
�
#�1fX 0

ict
eXict

��1 1p
#

CitX
c=1

TicX
t=1

NctX
i=1

eXicte"ict
where # is the total number of observations.

In our paper, we estimate the transformed form (13) instead of (7) in the two-stage

least square regressions: In the �rst stage ,Xict is a vector of [IVc;t �Xi Controlsi;c;t]
0 . IVc;t

include natural disaster shocks, political shocks, revolution shocks and terrorist shocks. Yict
is the uncertainty measure that we instrumented for.

Then in the second stage, we use the estimated eYict from (13) and control variables as a

new bXict vector of
heYict Controlsi;c;ti0 and Yict is the industry growth variable. That is, we

estimate the following:

Yict = �i;c + �i;t + �c;t + bXict� + "ict
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using the demean method again. So that, we can rewrite the estimation equation as

eeY ict =
ffX 0

ict� + e"ict (14)

where eeY ict = Yict � Y ic: � Y i:t + Y i:: � Y :ct + Y :c: + Y ::t � Y :::eeX ict = bXict � bX ic: � bX i:t + bX i:: � bX :ct + bX :c: + bX ::t � bX :::e"ict = "ict � "ic: � "i:t + "i:: � ":ct + ":c: + "::t � ":::

We can thus estimate � using:

b� = �ffX 0
ict
eeX��1 eeX ict

eeY ict

In general since we do not know the distribution of "ict we do not know the distribution ofe"ict either. We test various distributions for e"ict ; including bootstrap, clustering and allowing
for serially correlated errors. We �nd that our results are robust to various distributions ofe"ict. In the paper, we report results using bootstrapped errors.
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Table 7: Country Coverage and Number of Observations

Country
No. of
observations Country

No. of
observations

Argentina 961 Kuwait 907
Australia 999 Luxembourg 1,013
Austria 1,013 Mexico 961
Belgium 1,009 Morocco 1,039
Bangladesh 961 Netherlands 1,013
Canada 961 Nigeria 934
China 772 Norway 985
Chile 1,033 New Zealand 1,065
Colombia 1,013 Pakistan 961
Czech Republic 715 Peru 1,065
Denmark 1,013 Philippines 799
Ecuador 1,013 Poland 1,013
Egypt 961 Portugal 1,007
Finland 1,013 Romania 1,039
France 1,013 Russian Federation 499
United Kingdom 1,010 South Africa 1,036
Germany 444 Saudi Arabia 934
Greece 986 Singapore 1,025
Hungary 1,013 Spain 1,011
India 987 Sweden 1,013
Indonesia 1,013 Switzerland 961
Ireland 1,004 Thailand 961
Iran, (Islamic Republic of) 1,013 Tunisia 961
Israel 957 Turkey 961
Italy 1,011 Ukraine 445
Japan 1,013 Venezuela 961
Kenya 1,018 Viet Nam 202
Korea, Republic of 1,039

B Basic Data

Table 7 reports an overview of the data by country. Table 8 reports the industry technological

characteristics.
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Table 8: Industry Technological Measures

Note: EFDi (external �nance dependence), DEPi (depreciation), RND (R&D intensity), LABi (labor intensity), FIXi (�xity),

LMPi (investment lumpiness) are the average of 70s, 80s and 90s from Ilyina and Samaniego (2011); The manufacturing

industry classi�cation is 3 digit ISIC rev2.
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Table 9: LIML estimation results
This table represents results from the following regression using LIML estimation procedure:

Growthc;i;t= �i;c+�i;t+�c;t+�(UncertaintyShockc;t�1�X i) + �Controlsi;c;t+�c;i;t

We only report �. Each cell represents one regression. The dependent variable is industry value added growth rate, output index
growth rate and gross output growth rate. Independent variables are the following: EFDi(external �nance dependence),

DEP i(depreciation), RND (R&D intensity), LABi(labor intensity), FIX i(�xity), LMP i(investment lumpiness) are

the average of 70s, 80s and 90s from Ilyina and Samaniego (2011). The uncertainty measures are stock market returns, cross

section, bond yield and exchange rate volatility from Bloom et al (2012). Standard errors in parentheses, *** p<0.01, **

p<0.05.

Industry growth measure Growthc;i;t
Xi Value added Output index Output
DEP -.284*** -.007*** -.138**

(:0549) (:00235) (:0604)
LMP -.676*** -.0239*** -.296***

(:194) (:00695) (:0843)
EFD -.256* -.0137 .0201

(:133) (:0117) (:0586)
RND -.188* -.0247** -.145

(:110) (:0123) (:0983)
LAB -3.698*** -.0168 -.803

(1:266) (:0324) (:544)
FIX 2.164** .108*** 1.250***

(:978) (:0365) (:483)
Obs 16,149 15,115 16,152

C Further estimation results

Results using LIML rather than TSLS are reported in the Table 9. Results are generally

similar to the basic results reported in the paper. The main di¤erence is that the row for

FIXi now has signi�cant coe¢ cients for all measures of Growthc;i;t. However, this is not the

case in the TSLS speci�cation.
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D Proofs

First some derivations.

Given z and k it is simple to �nd the optimal value of n (z; k) =
�
�zk�

w

� 1
1�� . Plugging

that in we end up with a modi�ed reduced form problem of the form:

V (z; k�1; vt) = max
k

�
~zk~� � (k � k�1)� �max f0; k�1 � kg+ 1� � (z)

1 + i
EV (z0; k (1� �) ; v0)

�
(15)

where ~� = �
1�� < 1 and ~z =

�
z

w��

� 1
1��
h
�

�
1�� � �

1
1��

i
.

Proof of Lemma 1 Consider the transformed problem

V (z; k�1; vt) = max
u;h

�
~zk~� � u� (1� �)h+

1� � (z)

1 + i
EV (z; k (1� �) ; vt)

�
u � 0; h � 0

k = k�1 + u� h:

It is straightforward to show that when h > 0 is optimal, u = 0, since having u > 0 would

imply incurring larger costs � to achieve a desired level of capital k. Similarly, when u > 0 is

optimal, h = 0, since having h > 0 would imply incurring costs � to achieve a desired level

of capital k when this is not needed.

Proof of Proposition 1 The recursive problem has also an in�nite-horizon speci�cation

that has the same solution. We �nd it convenient to work with the in�nite problem. This is

max

(
E

1X
t=0

�
1� � (z)

1 + i

�t �
~ztk

~�
t � ut � (1� �)ht

�)
ut � 0; ht � 0

kt = kt�1 (1� �) + ut � ht

Writing down the Lagrangian for this problem we obtain:

E

1X
t=0

�
1� � (z)

1 + i

�t �
~ztk

~�
t � ut + (1� �)ht + �tut + �tht + t [kt � kt�1 (1� �)� ut + ht]

�
where �t, �t and t are the multipliers on ut, ht and kt respectively. The Karush-Kuhn-Tucker
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(KKT) conditions for the multipliers are:

�tut = 0, �tht = 0, t [kt � kt�1 (1� �)� ut + ht] = 0

The derivatives of the Lagrangian yield the following optimality conditions:

~ztk
~�
t �ut+(1� �)ht+�tut+�tht+t [kt � kt�1 (1� �)� ut + ht]+

�
1� � (z)

1 + i

�
E
�
~zt+1k

~�
t+1 � ut+1 + (1� �)ht+1 + �t+1ut+1 + �t+1ht+1 + t+1 [kt+1 � kt (1� �)� ut+1 + ht+1]

�
~�~ztk

~��1
t + t �

�
1� � (z)

1 + i

�
E [t+1 (1� �)] = 0

�1 + �t � t = 0, (1� �) + �t + t = 0

This yields three cases. First, if ut > 0 (positive investment) then

�t = 0;�1 = t; �t = �; ht = 0

and

~�~ztk
~��1
t � 1 =

�
1� � (z)

1 + i

�
E [t+1 (1� �)] (16)

This implies that if �rms invest they will invest up to the value of kt that satis�es this

equation. Then, if ht > 0 (negative investment) then

�t = 0; t = � (1� �) ; �t = �

and

~�~ztk
~��1
t � (1� �) =

�
1� � (z)

1 + i

�
E [t+1 (1� �)] (17)

This implies that if �rms disinvest they will do so down to the value of kt that satis�es this

equation.

If both h and u are zero then

�t � 0; �t � 0; t � 0

and

kt = kt�1 (1� �)
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So that t satis�es:

~�~ztk
~��1
t + t �

�
1� � (z)

1 + i

�
E [t+1 (1� �)] = 0 (18)

We also have that

�1 + �t � t = 0

(1� �) + �t + t = 0

�t + �t = �

Notice this implies that t 2 [�1;� (1� �)]. The next stage in the proof is to return to

the recursive problem and note that the fact that there is a recursive solution implies that

t =  (k�1; z; v), �t = � (k�1; z; v) and �t = � (k�1; z; v). Our conditions then become

� (k�1; z; v)u (k�1; z; v) = 0

� (k�1; z; v)h (k�1; z; v) = 0

 (k�1; z; v) [k (k�1; z; v)� kt�1 (1� �)� u (k�1; z; v) + h (k�1; z; v)] = 0

~�~ztk (k�1; z; v)
~��1 +  (k�1; z; v)�

�
1� � (z)

1 + i

�
E [ (k; z0; v0) (1� �)] = 0

�1 + � (k�1; z; v)�  (k�1; z; v) = 0

(1� �) + � (k�1; z; v) +  (k�1; z; v) = 0

For the case where either of h or u are non-zero, this implies that the chosen value of k

when there is investment or disinvestment depends only on z and v, since k�1 does not enter

the relevant equations (16) and (17). This de�nes the thresholds �k� (z; v) and k� (z; v). In

addition, (16) and (17) imply that

�k� (z; v)~��1 = k� (z; v)~��1 +
�

~�~zt

which in turn implies that �k� (z; v) < k� (z; v). Then, for the case where both h and u are

zero, equation (18) becomes

~�~ztk
~��1
�1 +  (k�1; z; v)�

�
1� � (z)

1 + i

�
E [ (k�1 (1� �) ; z0; v0) (1� �)] = 0: (19)

Rearranging this so that  (k�1; z; v) is a function of other arguments, standard recursive
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arguments apply to this problem so that the Bellman operator B in the following equation

is a contraction mapping:

B (k�1; z; v) = min

�
�� 1;max

�
�1;�~�~zk~��1�1 (1� �)~��1 +

�
1� �

1 + i

�
(1� � (z))

Z Z
 (k�1 (1� �) ; z0; v0) dFz (z

0jz; v) dFv (v0jv)
��

Assuming that  is increasing and concave implies that B is also increasing and concave

(since the sum of concave functions is concave). This completes the proof.

Proof of Proposition 2 The solution to the decision problem is found by construction

in the proof of Proposition 2:1. The fact that, regardless of the original condition, all �rms

will immediately restrict their capital stocks to being below the supremum of k� (z; v) means

that the measure �t cannot explode. This is because �rms above k
� (z; v) immediately shrink

to k� (z; v) :

Proof of Proposition 3 Note that all �rms either invest to �k� (z; v), disinvest to k� (z; v)

or depreciate by a factor of 1 � �. Thus, for any given value of (z; v) �rms are either at
�k� (z; v) (1� �)x or k� (z; v) (1� �)x for some x � 0. Or zero if they are newborn. However
since incumbent �rms cannot have capital below the lowest value of �k� (z; v) or k� (z; v) that

means that at some point they need to reinvest (or disinvest) back to �k� (z; v) or k� (z; v).

The exception of course is �rms whose initial conditions were not on that grid: however as

they depreciate and/or experience shocks at some point they will have to invest or disinvest

to �k� (z; v) or k� (z; v).
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